摘要
针对一类具有输入饱和因子的不确定时滞广义系统,利用线性矩阵不等式方法研究了其无源性和无源控制问题,首先,借助于Lypunounov稳定性理论和线性矩阵不等式,给出并证明了广义系统稳定并具有严格无源性的充分条件。进一步,给出了系统无源控制器存在的充分条件,该充分条件以线性矩阵不等的形式给出。最后,通过求解线性矩阵不等式,给出无源性控制器的设计方法。数值算例与仿真说明上述所提出的方法是有效的。
The problem of passive realness and passive control for uncertain time-delay singular systems with input saturation actuators is investigated by using the linear matrix inequality approach. Firstly , by using Lyapunov stability theory and linear matrix inequalities (LMIs), a sufficient condition is presented and proved for singular systems to be stable and strictly passive. Furthermore, we give a sufficient condition that ensures systems have passive controllers . The obtained condition is formulated in terms of strict linear matrix inequality. Finally , the state feedback passive control law is given in terms of the feasible solutions of linear matrix inequalities (LMIs). A numerical example shows the effectiveness of the proposed method.
出处
《控制工程》
CSCD
北大核心
2013年第4期722-725,共4页
Control Engineering of China
基金
合肥学院网络与智能信息处理重点实验室项目
关键词
饱和因子
时滞
广义系统
无源控制
线性矩阵不等式
saturating actuators
time delay
singular system
linear matrix inequality (LMI)