期刊文献+

病态混叠下语音信号的盲源分离 被引量:2

Underdetermined blind source separation of speech signals
下载PDF
导出
摘要 针对稀疏信号盲源分离势函数法需要过多参数,以及聚类算法需要知道源信号个数的缺陷,采用基于拉普拉斯模型的势函数法估计源信号数目和混合矩阵。将混合信号重新聚类,对每一类信号的协方差矩阵进行奇异值分解,混合矩阵得到更精确的估计,进而源信号也得到更精确的估计。通过计算机仿真,表明了该算法的优越性。 For the defects that blind source separation potential function method requires too many parameters and the number of the source signal needs to be known as priori condition in the clustering algorithm, the potential function method based on Lapla- cian model is used to estimate the number of source signals and the mixing matrix. Then the mixed signals are re-clustered, and the covariance matrix of each type of signal is solved with the singular value decomposition. The mixing matrix is estimated more precisely, and then the source signals are also estimated more precisely. Through computer simulation, it demonstrates the superiority of the proposed algorithm.
出处 《计算机工程与应用》 CSCD 2013年第14期212-216,共5页 Computer Engineering and Applications
基金 国家自然科学基金(No.60972084) 广西自然科学基金(No.0832007Z)
关键词 奇异值分解 混合矩阵 稀疏信号 势函数 聚类 singular value decomposition mixing matrix sparse signal potential function clustering
  • 相关文献

参考文献19

  • 1Aissa-El-Bey A, Abed-Meraim K, Grenier Y.Underdeter- mined blind audio source separation using modal decompo- sition[J].EURASIP Journal on Audio, Speech, and Music Processing, 2007. 被引量:1
  • 2Varajarajan V, Krolik J L.Multiehannel system identification methods for sensor array calibration in uncertain multi-path environments[C]//IEEE Signal Processing Workshop on Sta- tistical Signal Processing ( SSP' 01 ), Singapore, 2001 : 297-300. 被引量:1
  • 3Rouxel A, Le Guennec D, Macchi O.Unsupervised adaptive separation of impulse signals applied to EEG analysis[C]// IEEE International Conference on Acoustics, Speech, Signal Processing, Singapore, 1998 : 2888-2897. 被引量:1
  • 4Abed-Meraim K,Attallah S,Lim T J,et al.A blind interfer- ence canceller in DS-CDMA[C]//IEEE International Sympo- sium on Spread Spectrum Techniques and Applications, Par- sippany, 2000: 358-362. 被引量:1
  • 5Cichocki A,Amari S.Adaptive blind signal and image pro- cessing:learning algorithms and applications[M].[S.1.]:Wiley, 2003. 被引量:1
  • 6Hyvarinen A, Karhunen J, Oja E.Independent component analysis[M].[S.1.] : Wiley, 2001. 被引量:1
  • 7Bofill P,Zibulevsky M.Underdetermined blind source separa- tion using sparse representations[J].Signal Processing, 2001, 81( 11 ) :2353-2362. 被引量:1
  • 8Zhang Wei, Liu Ju, Sun Jiande, et al.A new two-stage approach to underdetermined blind source separation using sparse rep- resentation[C]//IEEE International Conference on Acoustics, Speech and Signal Processing,2007:953-956. 被引量:1
  • 9Georgiev P, Theis F, Cichocki A.Sparse component analysis and blind source separation of underdetermined mixtures[J]. IEEE Transactions on Networks,2005:992-996. 被引量:1
  • 10张烨..欠定混合信号的盲分离[D].上海大学,2009:

二级参考文献6

共引文献47

同被引文献12

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部