期刊文献+

数字图像清晰度评价函数的通用评价能力研究 被引量:33

Efficiency contrast of digital image definition functions for general evaluation
下载PDF
导出
摘要 图像质量客观评价是计算机视觉领域长期以来研究的难点和热点问题。如何能让计算机像人的视觉系统一样具有评价图像质量的能力,至今仍是尚未完全解决的难题。图像清晰度评价函数是图像质量客观评价标准中的重要组成部分。现有的图像清晰度评价函数主要基于图像边缘细节或者整体信息熵的统计,给出对图像相对清晰度的估计。主要考察了五种具有代表性的清晰度评价函数,着重分析了它们对不同模糊程度下不同内容图像的清晰度评价能力,进而说明现有的清晰度客观评价方法与人主观感受的差距。 Image Quality Assessment (IQA) has long been a hot topic in the research field of computer vision. It is still a bard-tackling problem to enable the computer to assess the image quality as human visual system. As a vital component of IQA, Image Definition Evaluation Function(IDEF) is not only of great significance, but also conductive to the development of the related fields such as image restoration and image enhancement. The current IDEFs are mainly based on the amount of the image edge information or overall information entropy to estimate the image' s definition. This paper discusses the general evaluation efficiency of five typical IDEFs, and aims to study on their effectiveness to evaluate the definition of different images blurred in different depth simultaneously, which will indicate the distance between the given five IDEFs and the subjective perception.
出处 《计算机工程与应用》 CSCD 2013年第14期152-155,235,共5页 Computer Engineering and Applications
基金 国家自然科学基金重大研究计划项目(No.90920013)
关键词 图像质量客观评价 清晰度评价函数 图像边缘 信息熵 通用评价能力 image quality assessment image definition evaluation function image edge information entropy general evalua-tion efficiency
  • 相关文献

参考文献8

二级参考文献14

  • 1黄剑琪.基于频谱分析的数字对焦技术的研究:硕士学位论文[M].浙江大学,2001.21-31. 被引量:1
  • 2赵荣椿.数字图象处理导论[M].西安:西北工业大学出版社,1999.37-54. 被引量:3
  • 3Ng Kuang Chern,Aun Neow Poo,Marcelo H,et al.Practical issues in pixel-based autofocusing for machine vision[C].Seoul,Korea:Proceedings of the 2001 IEEE,International Conference on Robotics and Automation,2001.2791-2796. 被引量:1
  • 4Yoon Kim,Lee J S,Morales A,et al.A video camera system with enhanced zoom tracking and auto white balance[J].IEEE Transactions on Consumer Electronics,2002,48(3):428-434. 被引量:1
  • 5Ets S P,Luo J.Ground truth for training and evaluation of automatic main subject detection[C].Proceeding SPIE Conference on Human Vision and Electronic Imaging,2000.434-442. 被引量:1
  • 6Subbarao M,Choi T S,Nikzad A.Focusing techniques[J].Optical Engineering,1993,32(11):2824-2836. 被引量:1
  • 7Yi Yao,Besma Abidi,Narjes Doggaz,et al.Evaluation of Sharpness Measures and Search Algorithms for the Auto-focusing of High Magnification Images[J].Visual Information Processing,2006,(6246):1-12. 被引量:1
  • 8Kehtarnavaza N,Oh H J.Development and Real-time Implementation of a Rule-based Auto-focus Algorithm[J].Real-time Imaging,2003,(9):197-203. 被引量:1
  • 9Meng Bo,Zhu Ming,Cai Chang-jin.Design of Video Auto Focusing Based on Image Processing[J].Optical Information Processing,2006,(6027):501-509. 被引量:1
  • 10Feng Li,Hong Jin.A Fast Auto-focusing Method For Digital Still Camera[A].Proceedings of the Fourth International Conference on Machine Learning and Cybernetics[C].Guangzhou:Proceedings of the 2005 IEEE,2005.5001-5005. 被引量:1

共引文献169

同被引文献258

引证文献33

二级引证文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部