期刊文献+

应用直线集合分割的软件缺陷预测模型 被引量:1

Software defect prediction model based on line geometry division
下载PDF
导出
摘要 缺陷预测能够有效地提升软件测试的效率。基于朴素贝叶斯理论,提出了一个利用平面中点与直线几何关系进行分类的软件缺陷预测模型LGD-NB。LGD-NB有两种工作模式,当其基于最小风险进行决策时,比传统的朴素贝叶斯具有对代价更为精确的描述;在定义了几何上的高风险决策区域后,LGD-NB可作为元分类器,提供一个可集成其他分类模型进行二次分类的集成框架。实验结果显示:基于最小风险LGD-NB模型的预测性能优于传统的朴素贝叶斯;而集成了SVM算法后的LGD-NB,其预测能力也有较为明显的提升。 Software defect prediction can effectively improve the efficiency of software test. Based on Na^we Bayes statistical theory, a software defect prediction model named LGD-NB is put forward by using geometrical relationship between a point and a line. The LGD-NB model has two forms; the one is decision-making based on the least risk which has more accurate descrip- tion to the cost of misclassification. By defining the high risk area of decision-making, the second form of LGD-NB is to be a meta-classifier which provides an ensemble scheme for software defect prediction by which the another classifier can classify the modules which locate at the high risk area. The experimental results show that the LGD-NB based on the least risk has better prediction performance than Naive Bayes models. The LGD-NB ensemble with SVM has also effectively improved the predic- tion performance.
出处 《计算机工程与应用》 CSCD 2013年第14期34-38,共5页 Computer Engineering and Applications
基金 国家自然科学基金面上项目(No.61272436) 陕西省自然科学基础研究计划(No.2010JM8039)
关键词 软件缺陷预测 朴素贝叶斯 直线集合分割 元分类器 集成框架 software defect prediction Na~'Ve Bayes line geometry division meta-classifier ensemble scheme
  • 相关文献

参考文献16

  • 1Weyuker E J, Ostrand T J, Bell R M.Do too many cooks spoil the broth? using the number of developers to enhance defect prediction models[J].Empirical Software Engineering, 2008,13(5) :539-559. 被引量:1
  • 2Denaro G, Pezze M, Morasca S.Towards industrially rele- vant fault-proneness models[J].International Journal of Software Engineering and Knowledge Engineering,2003,13(4): 395-417. 被引量:1
  • 3Evett M, Khoshgoftaar T M, Chien P, et al.GP-based soft- ware quality prediction[C]//Proc of the 3rd Annual Genetic Programming Conference,San Francisco,CA,1998:60-65. 被引量:1
  • 4Quah T, Thwin M M.Application of neural networks for software quality prediction using object-oriented metrics[C]// Proc of 9th International Conference on Software Mainte- nance, Amsterdam, the Netherlands, 2003 : 113-122. 被引量:1
  • 5Song Q, Shepperd M J, Cartwright M, et al.Software defect association mining and defect correction effort prediction[J]. IEEE Transactions of Software Engineering, 2006, 32(2): 69-82. 被引量:1
  • 6Khoshgoftaar T M, Seliya N.Software quality classification modeling using the sprint decision tree algorithm[C]//Proc of 4th 1EEE International Conference on Tools with Artifi- cial Intelligence, 2002 : 365-374. 被引量:1
  • 7Menzies T, Greenwald J, Frank A.Data mining static code attributes to learn defect predictors[J].IEEE Transactions of Software Engineering, 2007,33 ( 1 ) : 2-13. 被引量:1
  • 8Huihua L, Bojan C.An adaptive approach with active learn- ing in software fault prediction[C]//Proc of the 8th Interna- tional Conference on Predictive Models in Software Engi- neering(PROMISE' 12).New York,USA:ACM,2012:79-88. 被引量:1
  • 9Menzies T,Milton Z,Turhan B,et al.Defect prediction from static code features: current results, limitations, new approaches[J]. Automated Software Engineering, 2010,17 (5) : 375-407. 被引量:1
  • 10Halstead M.Elements of software science[M].Amsterdam: Elsevier North-Holland, 1977. 被引量:1

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部