期刊文献+

捕获非合作目标后航天器的自主稳定技术研究 被引量:17

Research Automatic Stability Technology of Spacecraft Assembly with Captured Non-cooperative Targets on Orbit
原文传递
导出
摘要 捕获非合作目标后航天器质量特性发生突变,这大大地增加了系统的不确定性,控制不当容易导致失稳。为避免控制过程中航天器出现较大系统干扰问题,提出了先识别捕获后的系统质量特性,而后合理摆放非合作目标的自主稳定策略。首先,对航天器捕获过程和自主稳定策略进行了描述;其次,依据动量矩定理建立了非合作目标与航天器组合系统的数学模型,推导了非合作目标位置与质量特性之间的关系;然后,基于航天器数学模型和姿态测量信息,采用非线性规划方法对质量特性进行了辨识;最后,利用滑模变结构理论设计了非合作目标的控制回路,采用Lyapunov理论对系统的稳定性进行了分析。仿真结果表明:本文提出的自主配平策略响应快、精度高,适合在轨服务。 After capturing non-cooperative targets,the mass properties of the spacecraft change abruptly,which makes the system uncertain and unstable.To avoid excessive interference during the control process,an automatic balancing strategy is proposed which identifies the mass properties of the assembly and then moves the non-cooperative targets.First,the capturing process of non-cooperative targets and the automatic balancing strategy are described.Secondly,based on the theorem of the moment of momentum,the dynamic models of the assembly are generated,and the analytical relationship between the location of the non-cooperative target and the offset of the centroid is derived.Thirdly,based on the information measured by the optical gyros,a nonlinear programming method is used to get the mass properties.Finally,the sliding mode variable structure control theory is used to design the control loop of the non-cooperative targets,while the stability of the system is analyzed by Lyapunov theory.It is demonstrated that the strategy proposed in this paper is effective and suitable for services on-orbit.
出处 《航空学报》 EI CAS CSCD 北大核心 2013年第7期1520-1530,共11页 Acta Aeronautica et Astronautica Sinica
基金 国家自然科学基金(10902026)~~
关键词 航天器 非合作目标 自主稳定 辨识 非线性规划方法 滑模变结构控制 spacecraft non-cooperative target automatic stability identification nonlinear programming method sliding mode variable structure control
  • 相关文献

参考文献25

  • 1蔡洪亮,高永明,邴启军,卢昱.国外空间非合作目标抓捕系统研究现状与关键技术分析[J].装备指挥技术学院学报,2010,21(6):71-77. 被引量:24
  • 2陈统,徐世杰.非合作式自主交会对接的终端接近模糊控制[J].宇航学报,2006,27(3):416-421. 被引量:30
  • 3Wingo D R. Orbital recovery ' s responsive commercial space tug for life extension mission. AIAA-2004 3004, 2004. 被引量:1
  • 4Polites M E. An assessment of the technology of automa- ted rendezvous and capture in space. NASA-TP-1998- 208528, 1998. 被引量:1
  • 5Regan F J, Kavetsky R A. Add 2 on controller for ballis- tic reentry vehicles. IEEE Transactions on Automatic Control, 1984, 12(6): 869 880. 被引量:1
  • 6Lorell K R, Lange B O. An automatic mass-trim system for spinning spacecraft. AIAA Journal, 1972, 10 (8) 1031-1015. 被引量:1
  • 7Chilcls D A. Movable mass attitude stabilization system for artificial space stations. Journal of Spacecraft and Rockets, 1974, 8(9) :11-15. 被引量:1
  • 8Kuneiw B, Kaplan M. Optimal space station detumbling by Internal mass motion. Automatica, 1976, 12 (5): 45-51. 被引量:1
  • 9Salimov G R. On the stability of a rotating space station containing a moving element. Mechanics Solids, 1975, 10 (5) : 41-45. 被引量:1
  • 10Jae J K, Brij N A. Automatic mass balancing of air-bear ing-based three-axis rotational spacecraft simulator. Jour- nal of Guidance, Control, and Dynamics, 2009, 32 (3): 1005-1017. 被引量:1

二级参考文献45

  • 1贺有智.非线性预测控制在质量矩导弹姿态控制系统设计上的应用[J].战术导弹技术,2005(1):47-51. 被引量:3
  • 2林鹏,周凤岐,周军.基于变质心控制方式的再入弹头控制模式研究[J].航天控制,2007,25(2):16-20. 被引量:16
  • 3KAISER C,SJoBERG F,DELCURA J M,et al.SMARTOLEV:An orbital life extension vehicle for servicing commercial spacecrafts in GEO[J].Acta Astronautics,2008,63:400-410. 被引量:1
  • 4THIENEL J K,VANEEPOEL J M,SANNER R M.Accurate state estimation and tracking of a non-cooperative target vehicle[C]//AIAA.AIAA Guidance,Navigation,and Control Conference.Keystone,Colorado,United States:AIAA,2006:5511-5522. 被引量:1
  • 5INABA N,ODA M,ASANO M.Rescuing a stranded satellite in space-experimental robotic capture of non-cooperative satellites[J].Japan Society for Aeronautical and Space Sciences,2006,48(162):213-220. 被引量:1
  • 6DIMITROV D N,YOSHIDA K.Momentum distribution in a space manipulator for facilitating the post-impact control[C]//IEEE.IEEE International conference on Intelligent Robots and Systems.Sendai,Japan:IEEE,2004:80-88. 被引量:1
  • 7DARPA Tactical Technology Office.Front-end robotic enabling near-term demonstrations(FREND)Project Page[EB/OL].[2010-04-03].http://www.darpa.mil/tto/programs/frend.htm. 被引量:1
  • 8IANNOTA B.SUMO wrestles satellites into new orbits[J].Aerospace America,2006(2):26-.30. 被引量:1
  • 9BOSSE A,BARNDS W J,BROWN M A,et al.SUMO:Spacecraft for the universal modification of orbits[C]//SPIE.Proceedings of the SPIE Defense and Security Symposium.Bellingham,WA:SPIE,2004:36-46. 被引量:1
  • 10HENSHAW C G,AKINS K,CREAMER N G,et al.A software architecture for autonomous orbital robotics[C]//SPIE.Proc.of SPIE.Orlando,FL,USA:SPIE,2006:1-18. 被引量:1

共引文献63

同被引文献149

  • 1梁佳,刘劲松,顾苗.MFA控制在热流模拟中的应用[J].航天器环境工程,2009,26(5):431-435. 被引量:1
  • 2陈统,徐世杰.非合作式自主交会对接的终端接近模糊控制[J].宇航学报,2006,27(3):416-421. 被引量:30
  • 3崔乃刚,王平,郭继峰,程兴.空间在轨服务技术发展综述[J].宇航学报,2007,28(4):805-811. 被引量:163
  • 4LI Z, YANG X, GAO H. Autonomous impulsive rendezvous for spacecraft under orbital uncertainty and thruster faults [J]. Journal of the Franklin Institute, 2013, 350(9): 2455 - 2473. 被引量:1
  • 5PEREZ D, BEVILACQUA R. Differential drag spacecraft ren- dezvous using an adaptive Lyapunov control strategy [J]. Acta As- tronautica, 2013, 83(1): 196 - 207. 被引量:1
  • 6MA Y K, JI H B. Robust control for spacecraft rendezvous with dis- turbances and input saturation [J]. International Journal of Control, Automation and Systems, 2015, 13(2): 353 - 360. 被引量:1
  • 7GUO Y, SONG S, LI X H. Terminal sliding mode control for atti- tude tracking of spacecraft based on rotation matrix [J]. Mathematical Problems in Engineering, 2015. DOI: 10.1155/2015/187924. 被引量:1
  • 8SUN L, HUO W. Robust adaptive relative position tracking and at- titude synchronization for spacecraft rendezvous [J]. Aerospace Sci- ence and Technology, 2015, 41(1): 28 - 35. 被引量:1
  • 9WEISS A, BALDWIN M, ERWIN R S, et al. Model predictive con- trol for spacecraft rendezvous and docking: strategies for handling constraints and case studies [J]. IEEE Transactions on Control Sys- tems Technology, 2015, 23(4): 1638 - 1647. 被引量:1
  • 10WOLF M T, BURDICK J W. Artificial potential functions for high- way driving with collision avoidance [C]//IEEE International Con- ference on Robotics and Automation. Pasadena: IEEE, 2008, 5:3731 - 3736. 被引量:1

引证文献17

二级引证文献87

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部