期刊文献+

基于改进蚁群算法的障碍环境下路径规划研究 被引量:5

Study of Path Planning in Obstacle Environment Based on an Improved Ant Algorithm
下载PDF
导出
摘要 针对寻找机器人在障碍环境下到达特定目标最短路径问题,提出一种基于改进蚁群算法的路径规划方法。该算法通过赋予蚂蚁类似于人的方向感,使其具备局部路径思考能力,同时在蚁群算法中引入确定性选择和随机性选择相结合的方法,以及确定性选择概率和信息素挥发系数自适应调整策略,极大地改善了蚁群算法的全局搜索能力和搜索速度,并且显著地提高了算法寻找最优解的能力。在基于栅格地图的仿真测试条件下,该方法在不同问题规模和障碍条件下,均能达到很好的优化结果,并且满足实时路径规划的搜索速度要求。 In order to solve the problem of finding the shortest path to a specific target for robots, this paper presented a novel path planning method based on improved ant colony algorithm. The method made the ant have local path thinking ability by endowing it with sense of direction similar to human beings. The thought of combining deterministic selection and random selection, as well as adaptive adjustment strategy of deterministic selection probability and pheromone evaporation coefficient, were also adopted. These means greatly improved the global search ability of the ant colony algorithm and accelerated the search speed, as well as improved its ability to find optimal solution. In the simulation environment based on grid map, under different conditions of problem size and obstacle distribution, the method could always find the optimization results and meet the speed requirement for real-time path planning.
出处 《机械与电子》 2013年第7期61-64,共4页 Machinery & Electronics
基金 中国科学院科技创新基金项目(CXJJ-10-M16)
关键词 路径规划 障碍环境 改进蚁群算法 path planning obstacle environ- ment improved ant colony algorithm
  • 相关文献

参考文献7

二级参考文献39

  • 1庄健,王孙安.基于人工免疫网络机器人路径规划算法的进一步研究[J].系统仿真学报,2004,16(5):1017-1019. 被引量:12
  • 2恽为民,席裕庚.基于遗传算法的机器人关节空间最优运动规划[J].机器人,1995,17(4):206-217. 被引量:15
  • 3Derek J Bennet, Colin R McInnes. Distributed control of multirobot systems using bifurcating potential fields[J].Robotics and Autonomous Systems, 2010,58 (3) : 256 - 264. 被引量:1
  • 4Dorigo M, Maniezzo V, Colomi A. Ant system: optimization by a colony of cooperating agent[ J]. IEEE Transactions on Systems, Man, and Cybernetics, 1996,26( 1 ) :29 - 41. 被引量:1
  • 5Lim Kwee Kim, Ong Yew-Soon,Lim Meng Hiot,et al.Hybrid ant colony algorithms for path planning in sparse graphs E J]. Soft Computing, 2008,12(10) :981 - 994. 被引量:1
  • 6Garcia M A Porta, Montiel Oscar, Casfillo Oscar, et al. Path planning for autonomous mobile robot navigation with ant colony optimization and fuzzy cost function evaluation[ J]. Applied Soft Computing,2009,9(3) : 1102 - 1110. 被引量:1
  • 7Stutzle T, Hoos H H. Max-min ant system and local search for the travelling salesman problem[ A]. IEEE International Conference on Evolutionary Computation[ C ]. Indianapolis: IEEE Press, 1997.309 - 314. 被引量:1
  • 8Botee H M, Bonabeau E. Evolving ant colony optimization [J].Compex System, 1998,1 (2) : 149 - 159. 被引量:1
  • 9BI Xiao-jun,LUO Guang-xin. The improvement of ant colony algorithm based on the inver-over operator[ A]. IEEE International Conference on Mechatronics and Automation [C ]. Harbin: IEEE Press, 2007.2383 - 2387. 被引量:1
  • 10Kennedy J, Eberhart R C. Particle swarm optimization[ A]. IEEE International Conference on Neural Networks [ C ]. Piscataway, NJ: IEEE Press, 1995.1942 - 1948. 被引量:1

共引文献306

同被引文献53

引证文献5

二级引证文献71

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部