摘要
利用8-羟基喹啉铝(Alq3)与三乙胺之间路易斯酸碱相互作用的笼效应,以及正硅酸乙酯(TEOS)在三乙胺碱性条件下水解成二氧化硅的原理,经过正硅酸乙酯投料比例调控,成功通过一锅法在Alq3生成的过程中合成了表面由二氧化硅均匀包覆的核壳结构Alq3@SiO2.紫外-可见吸收光谱和荧光发射光谱表明,合成的Alq3@SiO2很好的保持了Alq3的光学性质.
From the view point of practical application, one thorny problem in organic light emitting diode (OLED) devices is how to protect the inner materials from being eroded by oxygen and moisture, and to undertake sufficient long-term stability. Alq3 is the earliest and widely used organometallic material as an electron transport layer and light emitting layer in OLED, undoubtedly, improving its photochemical stability via coating it with materials that possess anti-oxygen and anti-water characters is one of cost-effective ways. Motivated by this, here, we demonstrate one pot synthesis of Alq3@SiO2 with uniform SiO2 covering. To obtain the optimized core-shell Alq3@SiO2 particle, a mixture of 8-hydroxyquinoline (6 mmol), 1 mL EhN and 2 mL deionized water was dissolved in 120 mL ethanol and then heated to 70 ℃, a solution of Al2(SO4)3·8H2O (1mmol) in 5 mL water and a solution of tetraethylorthosilicate (TEOS) (2 mmol) in 5 mL ethanol were added dropwise at the same time, respectively. The mixture was allowed to react at 70 ℃ for about 5 h. Then, a green precipitate was obtained, and purified by washing with water and ethanol. The scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to characterize the morphology of the as-synthesized Alq3@SiO2 particles, which exhibited better results than previous reported. From the measurement of UV-Vis and PL spectra we can see the Alq3@SiO2 we have produced exhibited similar absorption and emission profile compared to pristine Alq3, which is beneficial for future application in OLED because it is almost not change the optical property of Alq3. The prepared principle of AIq3@SiO2 can be assigned to the plausible Cage Effect of Et3N embraced Lewis acid Alq3, and a further Et3N catalytic hydrolysis of TEOS to produce SiO2 on the surface of formed Alq3. Note that Et3N used in this case is also acted as Alq3 morphology protective agent during TEOS hydrolysis. This work provides a facile and large scale preparati
出处
《化学学报》
SCIE
CAS
CSCD
北大核心
2013年第7期1017-1021,共5页
Acta Chimica Sinica
基金
国家国际科技合作专项资助(No.2012DFR50460)
国家自然科学基金(Nos.21071108,21101111,61274056,61205179)资助~~