期刊文献+

地下土壤渗滤系统中溶解性有机物组成及变化规律研究 被引量:8

Characterizing Composition and Transformation of Dissolved Organic Matter in Subsurface Wastewater Infiltration System
下载PDF
导出
摘要 研究采用直径为30cm,高200cm的土柱模拟地下土壤渗滤系统,在水力负荷为4cm.d-1的运行条件下,综合利用三维荧光光谱技术(3D-EEM)及区域一体化(FRI)分析法研究取自地下土壤渗滤系统中不同深度处的溶解性有机物的组成及结构变化规律发现:(1)不同深度处的溶解性有机物(DOM)组成不同,进水及0.50m处的DOM主要由类蛋白质组成,而其余DOM中占主导地位的物质是类腐殖酸。(2)在有机污染物降解的过程中,DOM稳定性逐渐增强,而且在此过程中部分难降解有机物可以被去除。(3)增加地下土壤渗滤系统的深度不仅可以有效降低有机污染物浓度,而且可以提高出水DOM的稳定性。 In the present study,the soil column with radius of 30cm and height of 200cm was used to simulate a subsurface wastewater infiltration system.Under the hydraulic loading of 4cm . d -1,composition and transformation of dissolved organic matter (DOM) from different depths were analyzed in a subsurface wastewater infiltration system for treatment of septic tank effluent using three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) with regional integration analysis (FRI) .The results indicate that :(1) from different depth,the composition of DOM was also different ; influent with the depth of 0.5mwas mainly composed of protein-like substances,and that at other depths was mainly composed of humic-and fulvic-like substances. (2) DOM stability gradually increased and part of the nonbiodegradable organic matter can be removed during organic pollutants degradation process. (3) Not only the organic pollutants concentration was reduced effectively,but also the stability of the DOM improved in subsurface wastewater infiltration system.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2013年第8期2123-2127,共5页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(51208485) "十二五"科技支撑项目(2012BAJ21B06 2012BAJ21B04) 环保公益性项目(201109024)资助
关键词 三维荧光光谱 区域一体化分析法 溶解性有机物 地下土壤渗滤系统 Three-dimensional excitation emission matrix fluorescence spectroscopy (3D-EEM) Fluorescence regional integration (FRI) Dissolved organic matter (DOM) Subsurface wastewater infiltration system
  • 相关文献

参考文献14

  • 1Zhang J, Huang X, Liu C X, et al. Ecological. Engineering, 2005, 25: 419. 被引量:1
  • 2Wang X, Sun T H, Li H B, et al. Ecological. Engineering, 2010, 361 1433. 被引量:1
  • 3Ye C, Hu Z B, Kong H N, et al. Pedosphere, 2008, 18(3) : 401. 被引量:1
  • 4Maria H V, Ricardo S C, Javier M V, et al. Chemosphere, 2010, 81: 651. 被引量:1
  • 5ZHANG Jian, SHAO Chang-fei, LIU Zhi-qiang, et al. China Water ~ Wastewater , 2004, 20(4): 1. 被引量:1
  • 6Wu F C, Cai Y R, Evans D, et al. Biogeochemistry, 2004, 71(3): 339. 被引量:1
  • 7Chen W, Westerhoff P, Leenheer J A, et al. Environmental Science Technological, 2003, 37(24): 5701. 被引量:1
  • 8Marhuenda-Egea F C, Martinez-Sabater E, Jorda J, et al. Chemosphere, 2007, 68(2) : 301. 被引量:1
  • 9He X S, Xi B D, Wei Z M, et al. Chemosphere, 2011, 82(4): 541. 被引量:1
  • 10Baker A, Curry M. Water Research, 2004, 38(10): 2605. 被引量:1

同被引文献113

引证文献8

二级引证文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部