期刊文献+

磁致非晶合金纳米晶化及软磁性的优化 被引量:1

Nano-Crystallization of Amorphous Alloy by Magnetic Pulsing and Optimization of Soft Magnetic Properties
原文传递
导出
摘要 采用低频脉冲磁场对非晶合金Fe73.5Cu1Nb3Si13.5B9进行处理,用穆斯堡尔谱和透射电子显微镜分析了脉冲磁场处理前后非晶合金样品的微结构。结果表明,脉冲磁场处理致非晶合金在室温下发生了初始纳米晶化。利用交变梯度磁强计、自制磁致伸缩系数测量仪测量低频脉冲磁场处理前后样品的矫顽力Hc、饱和磁化强度Ms、起始磁导率μi和磁致伸缩系数λ。结果显示,低频脉冲磁场处理后样品的μi整体增大,Hc、λs总体低于制备态非晶合金,这表明低频脉冲磁场处理优化了非晶合金的综合软磁性能,样品软磁性优化程度与脉冲磁场处理参数有关,脉冲频率f=30Hz、作用时间t=4min不变,脉冲磁场强度Hp=250×79.6A/m处理参数下,样品的软磁性能最佳。 Amorphous alloy Fe73.5Cu1Nb3Si13.5B9 was treated by low frequency pulsating magnetic field. The microstructure of the amorphous alloy sample was analyzed by M ssbauer spectroscopy and TEM. The results show that the initial nano-crystallozation occurs in the ample during the pulsating magnetic field treatment at room temperature. By means of the alternating gradient magnetic meter and self-made magnetostrictive coefficient measuring instrument, coercive force Hc , saturation magnetization strength Ms , initial superconducting rate μi , and magnetostrictive coefficient λs of the samples were measured before and after low frequency pulsating magnetic field treatment. Results show that the overall μi increases after low frequency pulsating magnetic field treatment, while H c and λs are smaller than those of the as-prepared amorphous alloy. It indicates that low frequency pulsating magnetic field treatment can optimize comprehensive soft magnetic properties of amorphous alloys, and the optimization degree of soft magnetic properties is relevant with the parameters of plused magnetic field. The soft magnetic properties of the sample reach the best when the pulsating magnetic field strength H p =250×79.6 A/m, pulsating frequency f =30 Hz and disposing time t=4 min.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2013年第6期1236-1240,共5页 Rare Metal Materials and Engineering
基金 国家自然科学基金(50771025)
关键词 低频脉冲磁场 纳米晶化 饱和磁致伸缩系数 low frequency pulsating magnetic field nano-crystallization magnetostriction coefficient
  • 相关文献

参考文献12

  • 1Yoshizawa Y,Oguma S,Yamauchi K.Apps Phys[J],1988,64:6044. 被引量:1
  • 2Zhu Fengxia,Yi Jianhong,Li Liya et al.J Magn Mater Devices[J],2008,39(2):1. 被引量:1
  • 3LuKe(卢柯) WangJingtang(王景唐) DongLin(董林).金属学报,1991,29:31-31. 被引量:2
  • 4Su P S.Ultra Fine Particle Material Technology[M].Taiwan:Fuhan Press,1989. 被引量:1
  • 5Lu Ke,Wang Jintang et al.JApplPhys[J],1991,69:522. 被引量:1
  • 6晁月盛,张艳辉,郭红,张莉,王兴刚.低频磁脉冲处理Fe_(78)Si_9B_(13)非晶合金的低温纳米晶化[J].金属学报,2007,43(3):231-234. 被引量:13
  • 7Cui Yuguang(崔玉广),Guo Hong(郭红).材料技术与工程[J],2010,10(26):6505. 被引量:1
  • 8Fu Guiqin(傅贵勤),Dong Weiguo(董维国),Chen Suiyuan(陈岁元)et al.材料与冶金学报[J],2002,1(3):237. 被引量:1
  • 9Zhao Pin(赵品),Xie Fuzhou(谢辅洲),Sun Zhenguo(孙振国).Basic Course of Materials Scuebce(功能材料概论)[M].Harbin:Harbin University of Industrial Press,2002. 被引量:1
  • 10Yuan Defu(宛德福),Ma Xinglong(马兴隆).Magnetic Physic (磁性物理学)[M].Beijing:Electric Industry Press,1999:312. 被引量:1

二级参考文献19

共引文献14

同被引文献21

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部