期刊文献+

不可微多目标规划的高阶对称对偶性 被引量:3

Higher order symmetric duality in nondifferentiable multiobjective programming problems involving cones
原文传递
导出
摘要 本文研究锥约束不可微多目标规划的Mond-Weir型高阶对称对偶问题.本文指出Agarwal等人(2010)和Gupta等人(2010)工作的不足,给出规划问题的强对偶和逆对偶定理. In this paper, strong duality and converse duality theorems are established for a pair of Mond-Weir type multiobjective higher order symmetric dual programs over arbitrary cones. Our results fill some gaps in works of Agarwal et al. (2010) and Gupta et al. (2010).
作者 杨新民 杨进
出处 《中国科学:数学》 CSCD 北大核心 2013年第7期703-708,共6页 Scientia Sinica:Mathematica
基金 国家自然科学基金(批准号:10831009和11271391) 重庆市自然科学基金(批准号:CSTC2011BA0030)资助项目
关键词 多目标优化 高阶对称对偶 锥约束 强对偶定理 multiobjective programming, higher order symmetric dual model, cone constraints, strong duality theorem
  • 相关文献

参考文献7

  • 1Chen X H. Higher-order symmetric duality in nondifferentiable multiobjective programming problems. J Math Anal Appl, 2004, 290:423-435. 被引量:1
  • 2Agarwal R P, Ahmad I, Jayswal A. Higher-order symmetric duality in nondifferentiable multi-objective programming problems involving generalized cone convex functions. Math Comput Modelling, 2010, 52:1644-1650. 被引量:1
  • 3Gupta S K, Kailey N, Sharma M K. Higher-order (F, a, p, d)-convexity and symmetric duality in multiobjective pro- gramming. Comput Math Appl, 2010, 60:2373-2381. 被引量:1
  • 4Gupta S K, Jayswal A. Multiobjective higher-order symmetric duality involving generalized cone-invex functions. Comput Math Appl, 2010, 60:3187-3192. 被引量:1
  • 5Suneja S K, Aggarwal S, Davar S. Multiobjective symmetric duality involving cones. European J Oper Res, 2002, 141: 471-479. 被引量:1
  • 6Gupta T R, Mehndiratta G. Nondifferentiable multiobjective Mond-Weir type second-order symmetric dualiity over cones. Optim Lett, 2010, 4:293-309. 被引量:1
  • 7Yang X M, Yang X Q, Teo K L, et al. Second-order symmetric duality in non-differentiable multiobjective programming with F-convexity. European J Oper Res, 2005, 164:406-416. 被引量:1

同被引文献22

  • 1YANG Xinmin(Department of Mathematics, Chongqing Normal University, Chongqing 630047,China).GENERALIZED SUBCONVEXLIKE FUNCTIONS AND MULTIPLE OBJECTIVE OPTIMIZATION [J].Systems Science and Mathematical Sciences,1995,8(3):254-259. 被引量:2
  • 2Corley H W. Optimality conditions for maximizations of set-valued functions [J]. Journal of Optimization Theory and Applications, 1988, 58: 1-10. 被引量:1
  • 3Chen G Y, Jahn J. Optimality conditions for set-valued optimization problems [J]. Mathematical Methods of Operations Research, 1998, 48: 187-200. 被引量:1
  • 4Gong X H, Dong H B, Wang S Y. Optimality conditions for proper efficient solutions of vector set-valued optimization [J]. Journal of Mathematical Analysis and Applications, 2003, 284: 332-350. 被引量:1
  • 5Jahn J, Khan A A, Zeilinger P. Second-order optimality conditions in set optimization [J]. Journal of Optimization Theory and Applications, 2005, 125 (2): 331-347. 被引量:1
  • 6Li S J, Zhu S K, Teo K L. New generalized second-order contingent epiderivatives and set-valued optimization problems [J]. Journal of Optimization Theory and Applications, 2012, 152: 587- 604. 被引量:1
  • 7Zhu S K, Li S J, Teo K L. Second-order Karush-Kuhn-Tucker optimality conditions for set- valued optimization [J]. Journal of Global Optimization, 2014, 58: 673-692. 被引量:1
  • 8Benson H P. An improved definition of proper efficiency for vector maximization with respect to cones [J]. Journal of Mathematical Analysis and Applications, 1979, 71: 232-241. 被引量:1
  • 9Li Z F. Benson proper efficiency in the vector optimization of set-valued maps [J]. Journal of Optimization Theory and Applications, 1998, 98: 623-649. 被引量:1
  • 10Yang X M, Li D, Wang S Y. Near-subconvexlikeness in vector optimization with set-vMued functions [J]. Journal of Optimization Theory and Applications, 2001, 110 (2): 413-427. 被引量:1

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部