期刊文献+

基于模拟谐振子算法的服务调度技术 被引量:4

Service scheduling technique based on simulated harmonic oscillator algorithm
原文传递
导出
摘要 为解决服务频繁调度的异常问题,采用谐振子理论方法,在分析云滴概念基础上,提出云滴WEB服务节点距离的定义,并以此为基础,构建一种服务调度距离模型,抽象出一种应用服务调用的实现框架.采用基于排列的方法和串行服务进度生成机制,结合多服务的任务列表,可以保证所得调度方案满足服务优先关系约束,协同完成云计算应用服务的调度工作.仿真试验表明,耗费时间较少. According to the service frequent scheduling anoma- lies, the definition of cloud droplet WEB service node distance is put forward, adopting simulated harmonic oscillator method based on analyzing the cloud droplets concept. From the per- spective of cloud computing, a service scheduling distance model is hereby constructed on basis of the aforesaid, and an imple- mentation framework using service scheduling is abstracted. Combining with method based on order and serial schedule gen- eration schemes and multi-service task list, the obtained schedu- ling scheme can meet the service schedule constraints of preced- ence relations for the coordination completion of the cloud com- puting application service combination task. The experiment and simulation indicate that the time consumed is less.
出处 《大连海事大学学报》 CAS CSCD 北大核心 2013年第2期78-81,共4页 Journal of Dalian Maritime University
基金 国家科技支撑计划基金资助项目(2009BAH43B02) 辽宁省自然科学基金资助项目(201204796) 辽宁省教育厅一般项目(L2012489)
关键词 云滴 模拟谐振子算法 服务调度距离模型 cloud droplet simulated harmonic oscillator algo- rithm service scheduling distance model
  • 相关文献

参考文献8

二级参考文献65

共引文献69

同被引文献44

  • 1王巍,赵国杰.粒子群优化在资源受限工程调度问题中的应用[J].哈尔滨工业大学学报,2007,39(4):669-672. 被引量:11
  • 2姜峰.基于关系的服务资源管理关键技术研究[D].北京:清华大学,2009. 被引量:2
  • 3林锦,郑春苗,吴剑锋,Calvin C.Chien.基于遗传算法的变密度条件下地下水模拟优化模型[J].水利学报,2007,38(10):1236-1244. 被引量:15
  • 4ALCARAZ J, MAROTO C. A robust genetic algorithm for resource allocation in project scheduling [ J]. Annals of Operation Research, 2001, 102( 1 ) : 83-109. 被引量:1
  • 5SOOKKYONG C, KWANGSIK C. Fault tolerance and QoS scheduling using CAN in mobile social cloud computing[ J ]. Cluster Computing, 2014, 17 ( 3 ) : 911- 926. 被引量:1
  • 6LI Wen-juan, WU Ji-yi. Trust-driven and QoS demand clustering analysis based cloud workflow scheduling strategies [ J ]. Cluster Computing, 2014, 17 ( 3 ) : 1013- 1030. 被引量:1
  • 7MA Ting-huai, CHU Ya, ZHAO Li-cheng. Resource allocation and scheduling in cloud computing: policy and algorithm[J]. IETE Technical Review, 2014, 31 ( 1 ) : 4-16. 被引量:1
  • 8TAO Fei, FENG Ying, ZHANG Lin, et al. CLPS-GA: a case library and Pareto solution-based hybrid genetic algorithm for energy-aware cloud service scheduling [ J ]. Applied Soft Computing Journal, 2014, 19 (6) : 264- 279. 被引量:1
  • 9JIA Zhen-yuan, LU Xiao-hong, YANG Jiang-yuan. Researchon job-shop scheduling problem basedongenetic algorithm [ J ]. International Journal of Production Research, 2011, 49(12): 3585-3604. 被引量:1
  • 10SIAMAK N, SEYED F. Locomotive assignment problem with train precedence using genetic algorithm [ J ]. Journal of Industrial Engineering International, 2012, 8 ( 1 ) : 1- 13. 被引量:1

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部