期刊文献+

分布式传感器网络中基于数据融合的目标定位算法研究 被引量:2

Study of Target Location Algorithm Based on Distributed Detection and Data Fusion
下载PDF
导出
摘要 利用分布式传感器网络以及数据融合方法来提高探测系统的检测与定位精度正在成为研究的热点。提出了一种应用于分布式传感器网络中的数据融合算法,通过对各个传感器节点的定位信息的加权求和来进行数据融合,用来提高探测系统目标定位的精度。算法采用两级自适应调整得到最优加权因子。首先利用线性最小方差估计(LMSE)算法得到权系数的初始值,然后利用训练节点和递归最小二乘(RLS)算法自适应地调整达到最优。对静态和运动目标的定位数据融合算法进行了仿真。仿真结果表明,相比单节点定位,融合算法的定位精度有约一到两个数量级的提高。 Distributed sensor networks and data fusion algorithms that improves the detection performance and localization accuracy of the detection system have become the research focus. A new data fusion algorithm of target positioning for the distributed sensor network is proposed which combines location data of each sensor node by weighted summation to improve the accuracy of target position. The coarse weight coefficients are be calculated by using the linear minimum square estimation (LMSE) criterion, and then are adapted according to the recursive least squares (RLS) algorithm and based on the train node to achieve the optimality. The number simulations of the data fusion algorithm for static and mobile targets positioning are given, and results show that compared with the single node localization, the positioning variance of fusion algorithm presented decreases on the order of 10^-1 to 10^-2.
作者 李森 赵健飞
出处 《科学技术与工程》 北大核心 2013年第19期5706-5711,共6页 Science Technology and Engineering
关键词 分布式传感器网络 数据融合算法 目标定位 distributed sensor network data fusion algorithm target location
  • 相关文献

参考文献2

二级参考文献14

  • 1胡士强,敬忠良,胡洪涛,田宏伟,李建勋.多传感器稳健融合跟踪算法[J].上海交通大学学报,2005,39(4):509-512. 被引量:16
  • 2敬忠良,徐宏,周雪琴,戴冠中.基于神经网络的机动目标信息融合与并行自适应跟踪[J].航空学报,1995,16(6):715-719. 被引量:18
  • 3刘兆磊,徐振来,许建峰,张光义.多传感器布局和目标跟踪精度分析[J].火力与指挥控制,2006,31(1):55-58. 被引量:12
  • 4BarShalom Y, Li X R. Estimation and tracking[M].New York:Artech House, 1993. 被引量:1
  • 5Blackman S, Popoli R. Design and analysis of modem tracking systems [M]. New York: Artech House, 1999. 被引量:1
  • 6BarShalom Y, Li X R. Estimation with applications to tracking and navigation: theory algorithms and software [M]. New York: John Wiley & Sons,2001. 被引量:1
  • 7Blair W Z, Barshalom Y. Tracking maneuvering targets with multiple sensors: does more data alwaysmean better estimates? [J]. IEEE Trans on Aerospace and Electronic Systems, 1996,32 (1): 450-456. 被引量:1
  • 8Esscamilla P, Mort N. Multi-sensor data fusion architecture based on adaptive Kalman filters and fuzzy logic performance assessment[A]. International Conference on Information Fusion [C]. USA:Annapolis, 2002. 87-93. 被引量:1
  • 9Bar-Shalom Y and Fortmann T E. Tracking and Data Association [M]. New York: Academic Press, 1988: 1-35. 被引量:1
  • 10Terwijn B, Porta J M, and Kr o se B J A. A particle filter to estimate non-markovian states [J}. International Conference on Intelligent Autonomous Systems, IAS'04, 2004: 1062-1069. 被引量:1

共引文献26

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部