期刊文献+

基于分块Harris特征的航拍视频拼接方法 被引量:6

Block Harris Based Mosaic Method for Aerial Video
下载PDF
导出
摘要 针对现有航拍视频拼接算法处理速度慢、准确性不高等问题,提出一种基于分块Harris特征的航拍视频拼接方法,改进了传统基于SIFT特征提取算法的不足,缩短了匹配时间,提高了匹配准确性。首先采用分块Harris角点提取的方法均匀提取图像中的角点,然后采用金字塔光流算法进行角点匹配,最后通过改进的RANSAC方法求出仿射变换参数。实验表明,该方法能够实时对航拍视频进行拼接,具有更高的准确性。 A mosaic method for aerial video based on the block Harris feature was proposed, which is able to cope with the problem of high computation and low accuracy of the current mosaic methods. This method overcomes the shortages of the traditional SIFT method, since it can save the matching time and improve the accuracy. First, block Harris feature extraction method is used to obtain a better distributed of the feature point. Then, pyramidal Lucas-Kanade algorithm is used to match the feature points. After that, an improved RANSAC method is used to calculate the affine parameter accurately. Experimental results show that our method can do mosaic quickly and correctly.
出处 《北京大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第4期657-661,共5页 Acta Scientiarum Naturalium Universitatis Pekinensis
基金 国家重点基础研究发展计划(61399)资助
关键词 航拍视频 图像拼接 SIFT特征 Harris特征 RANSAC算法 aerial video image mosaic SIFT feature Harris feature RANSAC algorithm
  • 相关文献

参考文献10

  • 1王家宝,张亚非,陆建江,周波,徐伟光,李阳.基于特征的航空视频序列拼接方法[J].解放军理工大学学报(自然科学版),2012,13(2):159-164. 被引量:3
  • 2Szeliski R, Kang S. Direct methods for visual scenereconstruction // IEEE workshop on representations ofvisual scenes. Washington DC: IEEE ComputerSociety, 1995: 26-33. 被引量:1
  • 3Capel D, Zisserman A. Automated mosaicing withsuper-resolution zoom // IEEE workshop on repre-sentations of visual scenes. Washington DC: IEEEComputer Society, 1998: 885-891. 被引量:1
  • 4杨涛,张艳宁,张秀伟,张新功.基于场景复杂度与不变特征的航拍视频实时配准算法[J].电子学报,2010,38(5):1069-1077. 被引量:22
  • 5Harris C, Stephens M. A combined corner and edgedetector // Proceedings of 4th Alevey Vision Con-ference. Manchester, 1988: 189-192. 被引量:1
  • 6Barron J L,Fleet D,Beauchemin S. Performance ofoptical flow techniques. International Journal ofComputer Vision, 1994, 12(1): 43-77. 被引量:1
  • 7Baker S,Matthews I. Lucas-kanade 20 years on: aunifying framework. International Journal of Com-puter Vision, 2004, 56(3): 211-255. 被引量:1
  • 8Lucas B, Kanade T. An iterative image registrationtechnique with an application to stereo vision //Artificial Intelligence. Vancouver, 1981: 674-679. 被引量:1
  • 9Pillemer K, Finkelhor D. The prevalence of elderabuse: a random sample survey. The gerontologist,1988,28(1): 5-57. 被引量:1
  • 10Fischler M A, Bolles R C. Random sample consensus:a paradigm for model fitting with applications toimage analysis and automated cartography. Communi-cations of the ACM,1981, 24(6): 381-395. 被引量:1

二级参考文献15

  • 1韦燕凤,赵忠明,闫冬梅,曾庆业.基于特征的遥感图像自动配准算法[J].电子学报,2005,33(1):161-165. 被引量:27
  • 2Ali S, Reilly V, Shah M. Motion and appearance contexts for tracking and reacquiring targets in aerial videos [ A]. In Proceedings of the IEEE Conference on Computer Vision and Patter Recognition [ C ]. Minneapolis, MN, USA, IEEE Computer Society: 2007.1 - 6. 被引量:1
  • 3Unmanned Aircraft Systems Roadmap 2005-2030 [ R]. Office of the Secretary of Defense, Washington. DC, USA, 2005.71 - 77. 被引量:1
  • 4Tomasi C, Kanade T. Detection and tracking of point features [R]. Carnegie Mellon University, Technical Report, 1991.1 - 20. 被引量:1
  • 5Lindeberg T. Feature detection with automatic scale selection [ J ]. International Journal of Computer Vision, 1998,30(2 ) : 77 - 116. 被引量:1
  • 6Lowe D G. Distinctive image features from scale-invariant keypoints [ J ]. International Journal of Computer Vision, 2004, 60 (2) :91- 110. 被引量:1
  • 7Matas J, Chum O, Urban M, and Pajdla T. Robust wide baseline stereo from maximally stable extreme regions [ A]. In Proceedings of British Machine Vision Conference [ C ]. Cardiff, UK, 2OY2. 384 - 393. 被引量:1
  • 8Grabner M, Grabner H, Bischof H. Fast approximated SIFT[A]. In proceedings of Asian Conference on Computer Vision [C]. India,2006.918 - 927. 被引量:1
  • 9Mikolajczyk K, Schrnid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27( 10):1615- 1630. 被引量:1
  • 10Harris C. Geometry from visual motion. Active Vision[M]. Cambridge,MA, USA: MIT Press, 1992.263 - 284. 被引量:1

共引文献22

同被引文献77

  • 1陈维明,高明顺,陈维南.一种摄像机内外参数的校准方法[J].东南大学学报(自然科学版),1993,23(4):105-108. 被引量:1
  • 2包倩,郭平.基于直方图的遥感图像相似性检索方法比较[J].遥感学报,2006,10(6):893-900. 被引量:16
  • 3陆懿,陈光梦,程松.基于神经网络的数字图像几何畸变矫正方法[J].计算机工程与设计,2007,28(17):4290-4292. 被引量:9
  • 4ZHOU G Q.Geo-referencing of video flow from small low-cost civilian UAV[J].Automation Science&Engineering IEEE Transactions On,2010,7(1):156-166. 被引量:1
  • 5LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. 被引量:1
  • 6HEBERT B,ANDREAS E,TINNE T,et al.SURF:Speeded up robust features[J].Computer Vision&Image Understanding Cviu,2008,110(3):404-417. 被引量:1
  • 7ROSTEN E,TOM D.Machine learning for high-speed corner detection[A].Proceedings of the 9th European Conference on Computer Vision(ECCV)[C].2006.430-443. 被引量:1
  • 8RUBLEE E,RABAUD V,KONOLIGE K,et al.ORB:An efficient alternative to SIFT or SURF[J].ICCV,2011,58(11):2564-2571. 被引量:1
  • 9LEUTENEGGER S,CHLI M,SIEGWART R Y.BRISK:Binary robust invariant scalable keypoints[J].ICCV,2011,58(11):2548-2555. 被引量:1
  • 10MICHAEL C,VINCENT L,CHRISTOPH S,et al.Brief:Binary robust independent elementary features[A].Proceedings of the 11th European Conference on Computer Vision(ECCV)[C].2010.778-792. 被引量:1

引证文献6

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部