期刊文献+

A ginkgo biloba extract promotes proliferation of endogenous neural stem cells in vascular dementia rats 被引量:13

A ginkgo biloba extract promotes proliferation of endogenous neural stem cells in vascular dementia rats
下载PDF
导出
摘要 The ginkgo biloba extract EGb761 improves memory loss and cognitive impairments in patients with senile dementia. It also promotes proliferation of neural stem cells in the subventricular zone in Parkinson's disease model mice and in the hippocampal zone of young epileptic rats. However, it remains unclear whether EGb761 enhances proliferation of endogenous neural stem cells in the brain of rats with vascular dementia. In this study, a vascular dementia model was established by repeatedly clipping and reperfusing the bilateral common carotid arteries of rats in combination with an intraperitoneal injection of a sodium nitroprusside solution. Seven days after establishing the model, rats were intragastrically given EGb761 at 50 mg/kg per day. Learning and memory abilities were assessed using the Morris water maze and proliferation of endogenous neural stem cells in the subventricular zone and dentate gyrus were labeled by 5-bromo-2-deoxyuridine immunofluorescence in all rats at 15 days, and 1, 2, and 4 months after model establishment. The escape latencies in Morris water maze tests of rats with vascular dementia after EGb761 treatment were significantly shorter than the model group. Immunofluorescence staining showed that the number and proliferation of 5-bromo-2-deoxyuridine-positive cells in the subventricular zone and dentate gyrus of the EGb761-treated group were significantly higher than in the model group. These experimental findings suggest that EGb761 enhances proliferation of neural stem cells in the subventricular zone and dentate gyrus, and significantly improves learning and memory in rats with vascular dementia. The ginkgo biloba extract EGb761 improves memory loss and cognitive impairments in patients with senile dementia. It also promotes proliferation of neural stem cells in the subventricular zone in Parkinson's disease model mice and in the hippocampal zone of young epileptic rats. However, it remains unclear whether EGb761 enhances proliferation of endogenous neural stem cells in the brain of rats with vascular dementia. In this study, a vascular dementia model was established by repeatedly clipping and reperfusing the bilateral common carotid arteries of rats in combination with an intraperitoneal injection of a sodium nitroprusside solution. Seven days after establishing the model, rats were intragastrically given EGb761 at 50 mg/kg per day. Learning and memory abilities were assessed using the Morris water maze and proliferation of endogenous neural stem cells in the subventricular zone and dentate gyrus were labeled by 5-bromo-2-deoxyuridine immunofluorescence in all rats at 15 days, and 1, 2, and 4 months after model establishment. The escape latencies in Morris water maze tests of rats with vascular dementia after EGb761 treatment were significantly shorter than the model group. Immunofluorescence staining showed that the number and proliferation of 5-bromo-2-deoxyuridine-positive cells in the subventricular zone and dentate gyrus of the EGb761-treated group were significantly higher than in the model group. These experimental findings suggest that EGb761 enhances proliferation of neural stem cells in the subventricular zone and dentate gyrus, and significantly improves learning and memory in rats with vascular dementia.
出处 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第18期1655-1662,共8页 中国神经再生研究(英文版)
基金 financially sponsored by the Natural Science Foundation of Shandong Province,No.Y2008C32 Scientific Research Funds of Shandong Provincial Education Ministry,No.J01K09
关键词 neural regeneration traditional Chinese medicine ginkgo biloba extract EGB761 vasculardementia neural stem cells subventricular zone dentate gyrus learning and memory grants-supported paper NEUROREGENERATION neural regeneration traditional Chinese medicine ginkgo biloba extract EGb761 vasculardementia neural stem cells subventricular zone dentate gyrus learning and memory grants-supported paper neuroregeneration
  • 相关文献

参考文献11

二级参考文献141

共引文献85

同被引文献219

引证文献13

二级引证文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部