期刊文献+

缺陷单层和双层石墨烯的拉曼光谱及其激发光能量色散关系 被引量:7

Raman spectra of monoand bi-layer graphenes with ion-induced defects-and its dispersive frequency on the excitation energy
原文传递
导出
摘要 拉曼光谱作为一种无破坏性、快速且敏锐的测试技术已经成为表征石墨烯样品和研究其缺陷的最重要的实验手段之一.本论文用离子注入在单层和双层石墨烯中产生缺陷,并利用拉曼光谱研究了存在缺陷时单层和双层石墨烯的一阶和二阶拉曼模,单层石墨烯的D模为双峰结构,而双层石墨烯的D模具有四峰结构.同时,利用四条激光线系统地研究了本征和缺陷单层和双层石墨烯的拉曼峰频率的激发光能量依赖关系,并基于石墨材料的双共振拉曼散射机理指认了离子注入后样品各拉曼峰的物理根源. Raman spectroscopy has become a key way for characterizing and studying disorder in graphene, due to its nondestructive, rapid and sensitive technique. In this paper, ion implantation is used to produce the structural defects in single-layer graphene (SLG) and bi-layer graphene (BLG). The first- and second-order modes of ion-implanted SLG and BLG and their physical origins were studied by Raman spectroscopy. The dependence of dispersive frequency of first- and second-order modes in SLG and BLG on the excitation energy was discussed in detail. Results show that the - 2450 cm-1 peak is the combination mode of the D mode at - 1350 cm-1 and the D" mode at - 1150 cm-1.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第13期476-482,共7页 Acta Physica Sinica
基金 国家重点基础研究发展计划(批准号:2009CB929301) 国家自然科学基金(批准号:11225421,10934007)资助的课题~~
关键词 石墨烯 缺陷 拉曼光谱 能量色散关系 graphene, defect, Raman spectroscopy, laser-energy dispersion
  • 相关文献

参考文献28

  • 1Novoselov K S, Geim A K, Morozov S V, Jiang 0, Zhang y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666. 被引量:1
  • 2Lu H Y, Wang Q H 2008 Chin. Phys. Lett. 25 3746. 被引量:1
  • 3Hu S J, Du Wei, Zhang G P, Gao M, Lu Z Y, Wang X Q 2012 Chin. Phys. Lett. 29057201. 被引量:1
  • 4Zhang Y B, Tan Y W, Stormer H L, Kim P 2005 Nature (London) 438 201. 被引量:1
  • 5Stoller M D, Park S J, Zhu Y W, An J H, Ruoff R S 2008 Nano Lett. 8 3498. 被引量:1
  • 6徐跃杭,国云川,吴韵秋,徐锐敏,延波2012物理学报61010701. 被引量:1
  • 7Bunch J S, Yaish Y, Brink M, Bolotin K, McEuen P L 2005 Nano Lett. 5287. 被引量:1
  • 8Tan P H, Han W P, Zhao W J, Wu Z H, Chang K, Wang H, Wang Y F, Bonini N, Marzari N, Pugno N, Savini G, Lombardo A, Ferrari A C 2012 Nat. Mater. 11 294. 被引量:1
  • 9Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S, Geim A K 2006 Phys. Rev. Lett. 97187401. 被引量:1
  • 10Zhao W J, Tan P H, Liu J, Ferrari A C 2011 J. Am. Chern. Soc. 133 5941. 被引量:1

共引文献1

同被引文献77

  • 1姚雅萱,任玲玲,高思田,赵迎春,高慧芳,陶兴付.石墨烯层数测量方法的研究进展[J].化学通报,2015,78(2):100-106. 被引量:11
  • 2牛志强,方炎.催化剂组分对制备单壁碳纳米管的影响[J].物理学报,2007,56(3):1796-1801. 被引量:4
  • 3GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials, 2007, 6(3): 183-191. 被引量:1
  • 4LI Xuesong, MAGNUSON C W, VENUGOPAL A, et al. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper [J]. Journal of the American Chemical Society, 2011, 133(9): 2816-2819. 被引量:1
  • 5THANASIS G, RASHID J, GEIM A K, et al. Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics [J]. Nature Nanotechnology, 2013, 8(2): 100-103. 被引量:1
  • 6MOON J S, SEO H C, STRATAN F, et al. Lateral graphene heterostructure field-effect transistor [J]. IEEE Electron Device Letters, 2013, 34(9): 1190-1192. 被引量:1
  • 7BAEL S, KIM H. Roll-to-roll production of 30-inch graphene films for transparent electrodes [J]. Nature Nanotechnology, 2010, 5(8): 574-578. 被引量:1
  • 8CHEN Jianyi, WEN Yugeng, GUO Yunlong, et al. Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates [J]. Journal of the American Chemical Society, 2011, 133 (44): 17548-17551. 被引量:1
  • 9ELIAS D C, NAIR R R, MOHIUDDIN T, et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane [J]. Science, 2009, 323: 610-613. 被引量:1
  • 10LI Xuesong, CAI Weiwei, AN J H, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science, 2009, 324: 1312-1314. 被引量:1

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部