期刊文献+

H型群上的Hardy-Littlewood-Sobolev不等式和Stein-Wiess不等式

Hardy-Littlewood-Sobolev inequality and Stein-Wiess inequality on H-type groups
下载PDF
导出
摘要 研究了H型群上一类带权的HLS不等式,也就是所谓Stein-Wiess不等式,并由此得到了H型群上的HLS不等式.通过建立H型群上一类积分算子的Lp-Lq有界性,利用此积分算子与Stein-Wiess不等式的关系,得到所求不等式,从而推广了Heisenberg群上的Stein-Wiess不等式. A Stein-Weiss inequality on H-type groups is studied. By the inequality, the HLS inequality on H-type groups is also derived. By proving the Lp-L estimate of an integral operator, the main result is established based on the relationship between the integral operator and the inequality, and this result im- plies Stein-Weiss inequality on Heisenberg group.
作者 胡亭曦
出处 《纺织高校基础科学学报》 CAS 2013年第2期231-235,共5页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(11271299) 天元基金资助项目(11126027) 陕西省自然科学基础研究计划项目面上项目(2012JM1014)
关键词 HLS不等式 Stein-Wiess不等式 H型群 Hardy-Littlewood-Sobolev inequality Stein-Wiess inequality H-type group
  • 相关文献

参考文献11

  • 1HARDY G H, LITTLEWOOD J E. Some properties of fractional integrals (1) [J]. Math Z, 1928,27 (1) : 565-606. 被引量:1
  • 2HARDY G H, LITTLEWOOD J E. On certain inequalities connected with the calculus of variations[J]. J London Math,1930,5(1):34-39. 被引量:1
  • 3SOBOLEV S L. On a theorem of functional analysis[J]. Mat Sbornik, 1938,4;471-479. 被引量:1
  • 4LIEB E H. Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[J]. Ann of Math, 1983,118(2): 349-374. 被引量:1
  • 5FOLLAND G B,STEIN E M. Estimates for the (a)b complex and analysis on the Heisenberg group[J]. Comm Pure Appl Math, 1974,27 (4) : 429-522. 被引量:1
  • 6FRANK R L, LIEB E H. Sharp constants in several inequalities on the Heisenberg group[J]. Annals of Mathematics, 2012,176 (1) : 349-381. 被引量:1
  • 7STEIN E,WEISS G. Fractional integrals on n-dimensional Euclidean space[J]. J Math Mech, 1958,7 :503-514. 被引量:1
  • 8HAN X,LU G,ZHU J. Hardy-Littlewood-Sobolev and Stein-Weiss inequalities and integral systems on the Heisenberg group[J]. Nonlinear Anal,2012, 75(11).4 296-4 314. 被引量:1
  • 9KAPLAN A. Fundamental solutions for a class of hypoelliptie PDE generated by composition of quadratic forms[J]. Trans Amer Math, 1980,258 (1) z 147-153. 被引量:1
  • 10HEBISCH W, SIKORA A. A smooth subadditive homogeneous norm on a homogeneous group[J]. Studia Math, 1990,96 : 231-236. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部