期刊文献+

不完美信息扩展博弈下的理性秘密共享协议

Rational secret sharing protocol in the context of extensive game with imperfect information
下载PDF
导出
摘要 主要研究理性秘密共享协议过程中,由于参与者的序贯行动所引起的不可置信威胁的问题.给出一个更加通用的满足计算k-resilient纳什均衡的(m,n)理性秘密共享协议(k<m),该协议可以消除不可置信威胁.与之前协议不同的是,当有参与者背离时,其他人并不选择中断协议,而是对背离者进行连续足够轮数的惩罚.在这个协议中,子秘密的更新并不需要在线分发者,而是通过参与者协商随机数来进行更新. We investigate the incredible threat issue caused by players' sequential actions in a rational secret sharing protocol.We propose a general rational secret sharing protocol satisfying k-resilient(m,n) Nash equilibrium which eliminates incredible threat.In our protocol,when some player deviates from the equilibrium,other players do not choose to abort but instead they continuously punish the deviator in enough runs.We do not need online distributor in our protocol but instead we use the negotiated random numbers by participants to update shares.
出处 《中国科学院大学学报(中英文)》 CAS CSCD 北大核心 2013年第4期539-546,共8页 Journal of University of Chinese Academy of Sciences
基金 国家重点实验室基金(Y1Z0081102)资助
关键词 秘密共享 博弈论 扩展博弈 序贯均衡 secret sharing game theory extensive game sequential equilibrium
  • 相关文献

参考文献13

  • 1Halpern J,Teague V. Rational secret sharing and multiparty computation[A].Chicago:ACM,2004.623-632. 被引量:1
  • 2Gordon S,Katz J. Rational secret sharing,revisited[A].Maiori:Springer,2006.229-241. 被引量:1
  • 3Abraham I,Dolev D,Gonen R. Distributed computing meets game theory:robust mechanisms for rational secret sharing and multiparty computation[A].Denver:ACM,2006.53-62. 被引量:1
  • 4Lepinski M,Micali S,Peikert C. Completely fair SFE and coalition-safe cheap talk[A].Newfoundland:ACM,2004.1-10. 被引量:1
  • 5Izmalkov S,Micali S,Lepinski M. Rational secure computation and ideal mechanism design[A].Pittsburgh:IEEE,2005.585-594. 被引量:1
  • 6Kol G,Naor M. Cryptography and game theory:Designing protocols for exchanging information[A].{H}New York:Springer-Verlag,2008.320-339. 被引量:1
  • 7Kreps D M,Wilson R. Sequential equilibria[J].Econometrica:Journal of the Econometric Society,1982.863-894. 被引量:1
  • 8Zhang Z,Liu M L. Rational secret sharing as extensive games[J].Science China Information Sciences,2010.1-13. 被引量:1
  • 9Herzberg A,Jarecki S,Krawczyk H. Proactive secret sharing or:How to cope with perpetual leakage[A].{H}Berlin:Springer-Verlag,1995.339-352. 被引量:1
  • 10Shamir A. How to share a secret[J].{H}Communications of the ACM,1979,(11):612-613. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部