期刊文献+

基于改进的蜜蜂交配算法的排课问题研究 被引量:1

Research on course timetabling problem based on improved honey-bee mating optimization algorithm
下载PDF
导出
摘要 原有蜜蜂交配算法杂交信息量小、勘探能力不足、蜂群多样性少,为了克服这些缺点,对蜜蜂交配算法进行了改进,主要包括交换父代、母代染色体中相互冲突的课程基因增大算法的交叉信息量,设定多种邻域并集的局部搜索策略扩大搜索空间,采用基于k对肯配链的变异操作和雄蜂的部分替换策略丰富蜂群中染色体的组成。应用苏哈数据集进行了测试,测试结果表明,该改进算法较原有算法具有更好的收敛精度、更快的收敛速度,在满足多重约束条件下,能够更有效地解决排课问题。 The original honey-bee mating optimization (HBMO) algorithm has some disadvantages of the crossover operator and the insufficient of exploration while also enlarge the search space for finding the optimal solution. In order to improve the original HBMO, several aspects are adapted including conflicts-based crossover operator, k-pair kempe chain mutation operator, double- neighborhood hill climb, the replacement strategy of drone. A lot of experiments on datasets shown that the improved algorithm increases the convergence precision and accelerates the convergence speed. The course timetabling problems are solved very well in complicated constraint conditions.
出处 《计算机工程与设计》 CSCD 北大核心 2013年第7期2431-2435,共5页 Computer Engineering and Design
基金 天津市应用基础与前沿技术研究计划重点基金项目(11JCZDJC15700)
关键词 蜜蜂交配算法 排课 课程争斗 K对肯配链 双邻域爬山法 HBMO course arrangement conflicts-based crossover k-pair kempe chain double-neighborhood hill climb
  • 相关文献

参考文献11

  • 1Arit Thammanp, Patcharawadee Poolsamran. Smbo: A self-organizing model of marriage in honey-bee optimization [J]. Expert Systems with Applications, 2012, 39 (5): 5576-5583. 被引量:1
  • 2Seyed Jafar Sadjadi, Roya Soltani. Alternative design redundancy allocation using an efficient heuristic and a honey bee mating algorithm [J]. Expert Systems with Applications 2012 , 39 (1): 990-999. 被引量:1
  • 3Taher Niknam. An efficient hybrid evolutionary algorithm based on PSO and HBMO algorithms for multi-objective distribution feeder reeonfiguration [J]. Energy Conversion and Management 2009, 50 (8): 2074-2082. 被引量:1
  • 4Magdalene Marinaki, Yannis Marinakis, Constantin Zopounidis. Honey bees mating optimization algorithm for financial classification problems [J]. Applied Soft Computing, 2010, 10: 806-812. 被引量:1
  • 5Haddad O B, Afshar A, Marino M A. Optimization of non-convex water resource problems by honey-bee mating optimization algorithm[J]. Engineering Computations, 2009, 26 (3): 267-280. 被引量:1
  • 6Nasser R Sabar, Masri Ayob, Graham kendall, et al. A honeybee mating optimization algorithm for educational timetabling problems [J]. European Journal of Operational Research, 2012, 216 (3): 533-543. 被引量:1
  • 7LU Zhipeng, HAO Jinkao. Adaptive tabu search for course timetabling [J]. European Journal of Operational Research, 2010, 200 (1): 235-244. 被引量:1
  • 8卢雪燕,周永权.蜜蜂双种群进化型遗传算法[J].计算机工程与设计,2008,29(13):3422-3424. 被引量:4
  • 9彭复明,吴志健.基于多种群遗传算法的排课方法[J].计算机工程与设计,2010,31(22):4877-4880. 被引量:8
  • 10谭跃,谭冠政,叶勇,伍雪冬.具有混沌局部搜索策略的双种群遗传算法[J].计算机应用研究,2011,28(2):469-471. 被引量:17

二级参考文献52

共引文献85

同被引文献5

引证文献1

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部