期刊文献+

含油纳米制冷剂沸腾中碳纳米管的相间迁移机制

Migration Mechanism of Carbon Nanotubes From Liquid Phase to Vapor Phase in the Boiling of Refrigerant/Nanolubricant Mixture
原文传递
导出
摘要 含油纳米制冷剂沸腾中碳纳米管相间迁移机制,是评估纳米制冷剂沸腾传热效果和制冷系统中碳纳米管循环能力的基础。本文基于颗粒捕集理论和气浮理论,提出了各因素对碳纳米管相间迁移的影响机制;即碳纳米管迁移率随其长度或直径的增大而增大,制冷剂动力学黏度越小、密度越大,其完全蒸发时碳纳米管迁移率越大,碳纳米管迁移率随润滑油浓度的增大而减小、随热流密度的增大而减小、随初始液位高度的增加而增大。同时通过实验验证了理论分析结果的准确性. Migration mechanism of carbon nanotubes from liquid phase to vapor phase in the boiling of refrigerant/nanolubricant mixture is fundamental to the evaluation of nanorefrigerant boiling heat transfer and carbon nanotubes circulation in refrigeration systems.Based on the particles trapping theory and notation theory,the influence mechanism of different factors on the migration of carbon nanotubes is proposed.The results showed that the migration ratio of carbon nanotubes increases with the increase of the diameter or length of carbon nanotubes.When the refrigerant is completely evaporated,the smaller dynamic viscosity or larger density of refrigerant causes the larger migration ratio of carbon nanotubes.The migration ratio of carbon nanotubes decreases with the increase of lubricating oil concentration or heat flux,while increases with the increase of initial liquid-level height.The accuracy of the theoretical analysis results is verified by the experimental results.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2013年第7期1323-1326,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50976065)
关键词 碳纳米管 制冷剂 润滑油 迁移机制 carbon nanotubes refrigerant lubricating oil migration mechanism
  • 相关文献

参考文献11

  • 1丁国良,彭浩,胡海涛.含油纳米制冷剂沸腾中纳米颗粒相间迁移特性预测模型[J].工程热物理学报,2011,32(4):561-564. 被引量:2
  • 2丁国良,姜未汀,彭浩,胡海涛.一种纳米流体热导率通用模型[J].工程热物理学报,2010,31(8):1281-1284. 被引量:4
  • 3Bi S S,Shi L,Zhang L L.Application of nanoparticles in domestic refrigerators[].Applied Thermal Engineering.2008 被引量:1
  • 4Peng H,Ding G,Hu H,Jiang W,Zhuang D,Wang K.Nucleate pool boiling heattransfer characteristics of refrigerant/oil mixture with diamond nanoparticles[].International Journal of Refrigeration.2010 被引量:1
  • 5Choi SUS,Zhang ZG,Yu W,Lockwood FE,Grulke EA.Anomalous thermal conductivity enhancement in nanotube suspensions[].Applied Physics.2001 被引量:1
  • 6AR Henn.Calculation of the stokes and aerodynamic equivalent diameters of a short reinforcing fiber[].Particle & Particle Systems Characterization.1996 被引量:1
  • 7Nguyen A V,Ralston J,Schulze H J.On Modelling of Bubble-Particle Attachment Probability in Flotation[].International Journal of Mineral Processing.1998 被引量:1
  • 8Edzwald J K,Malley J P,Yu C.A conceptual model for dissolved air flotation in water treatment[].Water Supply.1990 被引量:1
  • 9Prasher R,Bhattacharya P,Phelan P E.BrownianMotion -Based Convective-Conductive Model for the Effective Thermal Conductivity of Nanofluids[].Journal of Heat Transfer.2006 被引量:1
  • 10Henderson K,Park Y G,Liu L P,et al.Flow-Boiling Heat Transfer of R-134A-Based Nanofluids in a Horizontal Tube[].International Journal of Heat and Mass Transfer.2010 被引量:1

二级参考文献19

  • 1Choi U S. Enhancing Thermal Conductivity of Fluids with Nanoparticles [J]. ASME FED, 1995, 231:99-105. 被引量:1
  • 2Choi U S, Zhang Z G, Yu W, et al. Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions [J].Applied Physics Letters, 2001, 79:2252-2254. 被引量:1
  • 3WANG B X, ZHOU L Z, PENG X F. A Prectal Model for Predicting the Effective Thermal Conductivity of Liquid with Suspension of Nanoparticles [J]. International Journal of Heat and Mass Transfer, 2003, 46:2665-2672. 被引量:1
  • 4Bi S S, Shi L, Zhang L L. Application of Nanoparticles in Domestic Refrigerators [J]. Applied Thermal Engineering, 2008, 28:1834-1843. 被引量:1
  • 5Prasher R, Bhattacharya R, Phelana P E. Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids) [J]. Physical Review Letters, 2005, 94:025901.1-025901.4. 被引量:1
  • 6XUAN Y M, LI Q, HU W F. Aggregation Structure and Thermal Conductivity of Nanofluids [J]. AIChE Journal, 2003, 49:1038-1043. 被引量:1
  • 7YU W, Choi U S. The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Hamilton-Crosser Model [J]. Journal of Nanoparticle Research, 2004, 6:355-361. 被引量:1
  • 8XUE Q Z. Model for the Effective Thermal Conductivity of Carbon Nanotube Composites [J]. Nanotechnology, 2006, 17:1655-1670. 被引量:1
  • 9JIANC W T, DINC C L, PENC H, et al. Experimental and Model Research on Nanorefrigerant ThermM Conduc- tivity [J]. HVAC&R Research, 2009, 15:651-669. 被引量:1
  • 10Jiang W T, Ding G L, Peng H, et al. Measurement and Model on Thermal Conductivities of Carbon Nan- otube Nanorefrigerants [J]. International Journal of Thermal Sciences, 2009, 48:1108-1115. 被引量:1

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部