期刊文献+

基于面向对象技术的黄土丘陵沟壑区切沟遥感提取方法研究 被引量:11

Study on Recognition of the Gully in Loess Hilly-Gully Region Based on Object-Oriented Technology
下载PDF
导出
摘要 基于高分辨率遥感影像,提出了结合高分辨率影像的光谱、地形、几何形态和GLCM纹理信息等特征的切沟半自动面向对象提取方法,建立了一组沿径流方向计算纹理特征空间对比度和相关性的公式。以黄土丘陵沟壑第三副区甘肃天水桥子沟小流域World View-2影像数据为例,分别建立了耕地(山坡地、梯田)、果园、林地、农路、切沟的分类规则和算法,以影像的目视解译结果结合实地调查进行精度评价,分类结果显示,总体分类精度为75.17%,总Kappa系数为0.64,切沟的生产者精度为80%,用户精度为70.59%,取得了令人满意的结果。 Based on high resolution spatial image,this paper proposed a semi-automatic objected-based classification method to extract gully features using a combination of topographic,spectral,shape(geometric) and contextual information obtained from World View-2 data and a set of GLCMs metrics was calculated based on the flow direction.Taking the third auxiliary district of the loess hilly-gully area of Qiaozigou watershed of Tianshui in Gansu as a case,a rule-set was developed and tested on terrace,orchard,forest,road and gully.The classification results were evaluated by visual interpretation and field investigation which had promising accuracies,and the overall classification accuracy was 75.17%,the overall Kappa coefficient was 0.64,the producer accuracy of gully reached to 80% and the user accuracy was 70.59%.
作者 李斌兵 黄磊
出处 《水土保持研究》 CSCD 北大核心 2013年第3期115-119,124,共6页 Research of Soil and Water Conservation
基金 国家自然科学基金资助项目(41171224)
关键词 切沟 高分辨率影像 面向对象半自动分类方法 gully high resolution spatial image semi-automatic objected-based classification
  • 相关文献

参考文献15

  • 1杜国明,雷国平,宗晓丹.东北典型黑土漫岗区切沟侵蚀空间格局分析[J].水土保持研究,2011,18(2):94-97. 被引量:18
  • 2秦高远,周跃,杨黎.切沟侵蚀研究初探——以云南省文山县新开田村为例[J].水土保持研究,2007,14(5):79-81. 被引量:4
  • 3范昊明,王铁良,蔡强国,郭成久,武敏,周丽丽.东北黑土漫岗区侵蚀沟发展模式研究[J].水土保持研究,2007,14(6):384-387. 被引量:22
  • 4尹佳宜,伍永秋,汪言在.采用不同方法测量切沟的误差分析[J].水土保持研究,2008,15(1):12-16. 被引量:7
  • 5Knight J, Spencer J, Brooks A, et al. Large-area, High-Resolution Remote Sensing Based Mapping of AI luvial Gully Erosion In Australia's Tropical Rivers[C]//Wilson A L, Dehaan R I., Watts R J, et aI. Proceedings of the 5th Australian Stream Management Conference, Australian Rivers-Making a Difference. Thurgoona, New South Wales: Charles Sturt University,2007. 被引量:1
  • 6EustaccA. MatthewP, ChristianW. Give Me the Dirt: Detection of Gully Extent and Volume Using High-Res olution Lidar[C] // Jones S, Reinke K. Innovations in Remote Sensing and Photogrammetry. Berlin Heidel- berg: Spring-Verlag,2009. 被引量:1
  • 7Rajesh B V S, Norman K, Victor J. Object-based gully feature extraction using high spatial resolution imagery [J]. Geomorphology, 2011,134 ( 3/4 ) : 260-268. 被引量:1
  • 8Bohner J, McCloy K R, Strohl J. SAGA-Analysis and Modeling Applications [J]. Gottinger Geographische Abhandlungen, 2006,115 ( 1 ) : 130-135. 被引量:1
  • 9Meinel G, Neubert M. A Comparison of Segmentation Programs for High Resolution Remote Sensing Data [EB/OL]. (2004-11-23)[2012-10-29]. https://share- point, ngdc. wvu. edu/sites/digital soils/Remote% 20Sensing/References/comparison_of_image_ segmenta- tion_software, pdf. 被引量:1
  • 10Trimble. eCognition Developer 8 Reference Book[M]. Munchen: Trimble Germany GmbH, 2011. 被引量:1

二级参考文献35

共引文献37

同被引文献222

引证文献11

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部