期刊文献+

多传感器物联网嵌套数据集的管理与优化模型研究

The Research of The Management&Optimization Model of Nested Datasets for Multi-Sensor Internet of Things
下载PDF
导出
摘要 物联网中传感器节点的数据在汇集到集控设备后,需要对数据进行存储、分类、优化及响应(或显示).对于传感器节点采集的海量数据,目前常使用数据分层管理、优化查询条件的方式来实现实时响应,为了进一步提高数据的处理与响应效率,这里将考虑在数据分层的基础上构建嵌套数据集,并提出了嵌套数据集的管理与优化模型,最后给出了实际的应用效果. After being collected intensively to centralized control station,the data from the nodes of the sensors in the Internet of things are still needed to be stored,classified,optimized and reacted(or displayed).As to mass data acquired by sensor nodes,real reaction is realized in usual ways by data layering management and optimizing query conditions.To boost the efficiency of data processing and reacting further,the nested datasets are proposed to be built on the basis of data layering,further more,the nested datasets’ management and optimization models are represented.At last,actual results are offered.
出处 《河南师范大学学报(自然科学版)》 CAS 北大核心 2013年第3期63-67,共5页 Journal of Henan Normal University(Natural Science Edition)
基金 实验室类航空科学基金项目(20105155003) 河南省教育厅科技攻关项目(12B510030)
关键词 物联网 嵌套数据集 管理与优化 模型 internet of things nested datasets management & optimization model
  • 相关文献

参考文献10

  • 1Kortuem G,Kawsar F,Fitton D. Smart Objects as Building Blocks {or the Internet of Things [J]. IEEE Internet Computing, 2010,14 (01) 44-51. 被引量:1
  • 2Kranz M, Holleis P, Schmidt A. Embedded interaction: interacting with the Internet of things[J]. IEEE Internet Computing, 2010,14 (02) :46-53. 被引量:1
  • 3Semiha Kiziltas,Bureu Akinci. Automated Generation of Customized Field Data Collection Templates to Support Information Needs of Cost Estimators[J]. Oral o{ computing in civil engineering,2010,24(2) :129-139. 被引量:1
  • 4Jean-Philippe Vasseur, adam dunkels. Interconnecting Smart Objects with IP: The Next Internet[M]. San Fransisco:Morgan Kaufmann Publishers Inc, 2011 : 289-294. 被引量:1
  • 5Romero C. Educational Data Mining: A Review of the State of the Art. IEEE transactions on systems, man and eybernetics[J]. San Fransiseo : Part C, Applications and reviews, 2010,40 (6) : 601-618. 被引量:1
  • 6Ian H. Witten, Eibe Frank. Data Mining: Practical Machine Learning Tools and Techniques[M]. San Fransisco: Morgan Kaufmann Pub- lishers Inc, 2006 : 191-304. 被引量:1
  • 7Koshizuka N,Sakamura K. Ubiquitous ID: Standards for Ubiquitous Computing and the Internet of Things[J]. Pervasive Computing, 2010,9(04) : 98-101. 被引量:1
  • 8Hanan Samet. Foundations of Multidimensional and Metric Data Structures[M]. California:Morgan Kaufmann Publishers Inc,2011 ..485- 711. 被引量:1
  • 9Matthew A. Russell. Mining the Social Web: Analyzing Data from Facebook, Twitter, LinkedIn, and Other Social Media Sites[M]. California .. O'Reilly Media Inc, 2011 201-237. 被引量:1
  • 10Vupputuri S,Rachuri K K,Siva Ram Murthy C. Using mobile data collectors to improve network lifetime of wireless sensor networks with reliability constraints[J]. Journal of Parallel and Distributed Computing, 2010,70(7) : 767-778. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部