期刊文献+

基于内容的热点话题传播模型 被引量:9

A hot topic propagation model based on topic contents
下载PDF
导出
摘要 采用传染病模型对网络热点话题的传播进行建模具有重要的价值,但是现有的传染病模型并没有区分话题类型和不同用户传播话题的概率,为此提出一个基于内容的网络热点话题传播模型.模型中引入了用户对话题传播的敏感度,基于用户话题敏感度定义了单个用户传播话题的概率,融合话题的内容分类特性、用户传播概率、用户重入概率等因素,借鉴SIRS模型的基本思想,构建了话题传播模型(CSIRS).在无标度网络、小世界网络、随机网络和真实社会网络上作了不同实验,实验结果表明CSIRS模型不仅能够呈现一般传染病动力模型的传播模式,还能够呈现多个波动、小范围长时间传播、快速上升缓慢下降等社会网络热点话题的传播模式.该模型为融合网络结构和话题内容属性建模话题传播过程带来新的研究思路. Current researches suggest a new hot topic propagation modeling pattern, which uses the epidemic mod- el, and adds great value to the industry. Unfortunately, the existing epidemic models make no distinction between topic type and topic propagation probability of different users. A new propagation model based on topic contents for network hot topics was proposed in this paper. User's sensitivity degree to topic propagation was introduced and based on this, the single user propagation probability was defined. By integrating factors such as topic contents clas- sification characteristics, user propagation probability, user re-entry probability, and drawing on the basic idea of SIRS model, a topic propagation model (CSIRS for short) was built. Different experiments were conducted respec- tively in a scale-free network, small-world network, random network and real social network. The experimental re- suits show CSIRS model can not only present the propagation pattern of a general dynamic model of infectious dis- ease, but also present the propagation patterns of hot topics on social networks, such as multiple wave propagation patterns, small scale spreading with long tail propagation pattern and rapidly rising slowly falling tern. CSIRS model provides a new idea for modeling the topic propagation process by integrating and topic attribute.
出处 《智能系统学报》 CSCD 北大核心 2013年第3期233-239,共7页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(61170112) 教育部人文社会科学研究基金资助项目(13YJC860006) 北京市属高等学校科学技术与研究生教育创新工程建设项目(PXM2012_014213_000037)
关键词 热点话题 传播模型 传染病模型 话题传播模型 hot topic propagation model epidemic model topic propagation model propagation pat- network topology
  • 相关文献

参考文献20

  • 1刘晓凤,黄刘生,吴俊敏,徐宏力.传感网络定位中基于传染病模型的信息传播研究[J].小型微型计算机系统,2009,30(4):647-651. 被引量:3
  • 2张彦超,刘云,张海峰,程辉,熊菲.基于在线社交网络的信息传播模型[J].物理学报,2011,60(5):60-66. 被引量:153
  • 3KEELING M J, EAMES K T D. Networks and epidemic models [ J ]. Journal of the Royal Society Interface, 2005, 51(2) : 295-307. 被引量:1
  • 4RILEY S. Large scale spatial transmission models of infectious disease[ J]. Science, 2007, 316(5829) : 1298-1301. 被引量:1
  • 5NEWMAN M E J. Spread of epidemic disease on networks [J]. Physical Review E, 2002, 66( 1): 1103-1115. 被引量:1
  • 6WATTS D J, STROGATZ S H. Collective dynamics of small-world networks [ J ]. Nature, 1998, 393 ( 6684 ) : 440-442. 被引量:1
  • 7MAY R M, LLOYD A L. Infection dynamics on scale-free networks[J]. Physical Review E, 2001, 64(6) : 066112. 被引量:1
  • 8LLOYD A L, MAY R M. How viruses spread among computers and people[J]. Science, 2001, 292(5520): 1316- 1317. 被引量:1
  • 9PASTOR-SATORRAS R, VESPIGNANI A. Epidemic spreading in scale-free networks [ J ]. Physical Review Letters, 2001, 86( 14): 3200-3203. 被引量:1
  • 10MATSUBARA Y, SAKURAI Y, PRAKASH B A, et al. Rise and fall patterns of information diffusion: model and implications[ C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Beijing, China, 2012: 6-14. 被引量:1

二级参考文献50

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 2许丹,李翔,汪小帆.复杂网络病毒传播的局域控制研究[J].物理学报,2007,56(3):1313-1317. 被引量:63
  • 3Rabacy J J,Ammer M J,da Silva Jr. J L,et al. Picorodio supports ad hoe ultra-low power wireless networking[J]. Computer, July 2000,33(7):42-48. 被引量:1
  • 4Loukas Lazos,Radha Poovendran. SeRLoc: robust localization for wireless sensor networks[J]. ACM Transactions on Sensor Networks, August 2005,1 (1) : 73-100. 被引量:1
  • 5Perrig A, Szewczyk R, Wen V,et al. Spins: security protocols for sensor network[C]. Proceedings of the 7th Annual ACM/IEEE International Conference on Mobile Computing and Networking (MobiCom), Rome, Italy, July 2001, 189-199. 被引量:1
  • 6Karlof C, Sastry N, Wagner D. TinySec: a link layer security architecture for wireless sensor networks[J]. ACM SensSys' 04, Baltimore. MD,USA,Nov. 2004,162-175. 被引量:1
  • 7Hu Y C, Perrig A, Johnson D B. Packet leashes: a defense against wormhole attacks in wireless networks[C]. Proc. Infocom, San Francisco, CA, Apr. 2003, 1976-1986. 被引量:1
  • 8Li Z, Trappe W, Zhang Y,et al. Robust statistical methods for securing wireless localization in sensor networks[C]. Proc. Int. Conf. Inf. Process, Sensor Networks, Los Angeles California, USA,2005, 91-98. 被引量:1
  • 9Liu D, Ning P,Du W. Attack-resistant location estimation in sensor networks[C]. Proc. Int. Conf. Inf. Process. Sensor Networks, Los Angeles California, USA ,Apr. 2005, 99-106. 被引量:1
  • 10Capkun S, Srivastava M, Cagalj M. Secure positioning with hidden and mobile base stations [EB/OL]. NESL-UCLA, Tech. Rep. ,http://nesl. ee. uela. edu/, Jun. 2005. 被引量:1

共引文献189

同被引文献91

引证文献9

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部