期刊文献+

视频序列的人体运动描述方法综述 被引量:5

Study of human action representation in video sequences
下载PDF
导出
摘要 视频中的人体运动分析是计算机视觉领域的重要课题,同时也是近年来备受关注的前沿研究方向之一.在明确实际视频中存在的若干种难点,如人体遮挡、视频模糊、拍摄视角变化等基础上,从经典的人体运动特征提取、特征选择以及特征融合3个方面,对基于视频序列的人体运动描述方法和研究现状进行了概述,归纳出人体运动描述算法的研究难点,并分析了人体运动分析的技术发展趋势.指出了利用不同特征间存在的互补性质探求高性能特征选择和特征融合机制是人体运动描述技术发展的必然趋势,从处理简单实验场景视频向挑战高难度实际场景视频的转化是运动视频分析未来发展的方向. Recently analysis of human actions in videos has become an important issue in the field of computer vi- sion. Much attention has been paid to this frontier research. In this paper, we first explicitly defines several existing difficulties in real-world videos, such as body occlusion, video fuzzy, shooting angle change and then conducts a survey based on the popular methods and present situation research studies on human action representation. Next, we focus attention on three aspects of feature extraction, feature selection and feature fusion, and then summarize the research difficulties in algorithms of action description, and analyze the technical development trend of human action analysis. It was pointed out that the inevitable trend of human action representation technology is to explore high-performance feature selection and feature merging mechanism by making use of the complementary mechanism among different features, and the development trend of motion video analysis in the future is to change from pro- cessing simple experimental scene videos to the challenge of real-world scene videos with high difficulties.
出处 《智能系统学报》 CSCD 北大核心 2013年第3期189-198,共10页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金资助项目(60875050 60675025) 国家"863"计划资助项目(2006AA04Z247) 深圳市科学和技术创新委员会资助项目(JC201005280682A JCYJ20120614152234873 CXC201104210010A)
关键词 视频序列 人体运动描述 特征提取 特征选择 特征融合 video sequences human action representation feature extraction feature selection feature fusion
  • 相关文献

参考文献52

  • 1王亮,胡卫明,谭铁牛.人运动的视觉分析综述[J].计算机学报,2002,25(3):225-237. 被引量:276
  • 2BOBICK A F, DAVIS J W. The recognition of human movement using temporal templates [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23 (3) : 257-267. 被引量:1
  • 3傅晓英..基于半连接HMM模型的人体行为识别研究与实现[D].北京交通大学,2009:
  • 4BLANK M, GORELICK L, SHECHTMAN E, et al. Actions as space-time shapes [ C ]//International Conference on Computer Vision. Beijing, China, 2005: 1395-1402. 被引量:1
  • 5YILMAZ A, SHAH M. Actions sketch: a novel action representation[ C]//IEEE Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005: 984-989. 被引量:1
  • 6WANG L, SUTER D. Learning and matching of dynamic shape manifolds for human action recognition [ J ]. IEEE Transactions on Image Processing, 2007, 16 ( 6 ) : 1646- 1661. 被引量:1
  • 7HE Xiaofei, NIYOGI P. Locality preserving projections [ M]//THRUN S, SAUL L K, SCHOLKOPF B. Advances in Neural Information Processing Systems. Cambridge, USA: The MIT Press, 2003. 被引量:1
  • 8冯波..基于光流计算的典型行为识别算法研究[D].西北工业大学,2006:
  • 9EFROS A A, BERG A C, BERG E C, et al. Recognizing action at a distance [ C ]//International Conference on Computer Vision. Nice, France, 2003: 726-733. 被引量:1
  • 10FATHI A, MORI G. Action recognition by learning midlevel motion features[C]//IEEE Conference on Computer Vision and Pattern Recognition. Anchorage, USA, 2008 : 1-8. 被引量:1

二级参考文献105

  • 1[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143 被引量:1
  • 2[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81 被引量:1
  • 3[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56 被引量:1
  • 4[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990 被引量:1
  • 5[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066 被引量:1
  • 6[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252 被引量:1
  • 7[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785 被引量:1
  • 8[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89 被引量:1
  • 9[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964 被引量:1
  • 10[34]Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video. In: Proc IEEE Workshop on Applications of Computer Vision, Princeton, NJ, 1998. 8-14 被引量:1

共引文献275

同被引文献55

  • 1Qi Hao, Brady D J, Guenther Bob D, et al. Human tracking with wireless dislributed pyroelectric sensorsl J]. IEEE. Transac- tions on Sensors Journal,2006,6(6) :1683 - 1696. 被引量:1
  • 2Qi Hao, Fei Hu, Yang Xiao. Multiple human tracking and iden- tification with wireless distributed pyroelecCaic sensor systems [J] IEEP. Systems Journal, 2009,3(4) :428 - 439. 被引量:1
  • 3Qi Hao, Fei Hu, Jiang Lu. Distributed multiple human Iracking with wireless binary pyroelectric infrared (PIR) sensor net- worksE A] .Proceedings of IEEE Sensors[ C]. Kona, HI: IEEE, 2010.946 - 950. 被引量:1
  • 4Jiang Lu, Jiaqi Gong, Qi Hao, et al. Space encoding based com- pressive multiple human tracking with distributed binary pyre- electric infrared sensor networks [ A ]. Proceedings of IEF.E Conference on MFI[ C] .Hamburg: 1EEE,2012.180 - 185. 被引量:1
  • 5Ken Chen, Dong Li, Tiefen Xu. A self- adaptive alternation of video tracking modes governed by detection of online kalman performance optimafity [ A]. Proceedings of m.F.E International Conference on PIC[ C] .Shanghai: IEEE., 2010.781 - 785. 被引量:1
  • 6Pan Pan, Schonfeld D. Dynamic proposal variance and optimal particle allocation in particle filtering for video lracking [J]. Circuits and Systems for Video Technology, 2008,18 (9) : 1268 - 1279. 被引量:1
  • 7Li Q,Andreopoulos Y, Van der Schaar M. Streaming-viability analysis and packet scheduling for video over in-vehicle wire- less networks[ J]. IEEE Transactions on Vehicular Technolo- gy,2007,56(6) :3533 - 3549. 被引量:1
  • 8Sato Y, Hashimoto K, Shibata Y. A new video surveillance video tracking system based on omni-direcfional and network controlled cameras[ A ]. Proceedings of International Confer- ence on Advanced Information Networking and Applications [C]. Bradford: WIEEE., 2009.602 - 607. 被引量:1
  • 9Zb.ang Z,et al.Mulfi-target tracking using the sign of innova- tions in wireless sensor networks[ A] .Proceedings of Conlrol and Decision Conference [ C]. Taiyuan: IEEE, 2012. 3353 - 3357. 被引量:1
  • 10Liu X,Leung H,Valin P, et al.Mulfisensor joint tracking and identification using particle filter and Dempster-Shafer fusion [A]. Proceedings of IEEE Conference on Information Fusion [ C ]. Singapore: mEE, 2012.902 - 909. 被引量:1

引证文献5

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部