摘要
In this study, an amphiphilic copolymer folate-succinyl-methionine-chitosan-octyl (FSMCO) was successfully synthesized step by step for self-assembling polymeric micelles. The copolymers formed micelle-like nanoparticles by their amphiphilic characteristics and structures were examined by UV-Vis absorption and Fourier transform spectroscopy. The sizes of blank and ICG derivativeloaded micelles measured by dynamic light scattering were about 170 and 140 nm, respectively, which were spherical in shape with an average zeta potential of 10 mV. Further studies on the stability showed that the micellar solutions maintain their sizes at room temperature for 1 month without distinct aggregation or dissociation. ICG derivative was much better photostable after being entrapped by the new carrier. The prepared FSMCO micelles displayed a good drug loading content (11.7%), entrapment efficiency (66.5%) and sustained release rate for the model drug fluorescein. The copolymers demonstrated weeny cytotoxicity toward Bel-7402, L02 and A549 cells when incubated for 2 d. Ligands modified micelles endowed preferable cell targeting capability and beautiful cell inhibition of HCPT-FSMCO on Bel-7402 tumor cells. This kind of polymeric micelles may be a promising nanovehicle in delivering near-infrared dyes for tumors imaging and chemotherapeutic drugs for cancer therapeutics.
In this study, an amphiphilic copolymer folate-succinyl-methionine-chitosan-octyl (FSMCO) was successfully synthesized step by step for self-assembling polymeric micelles. The copolymers formed micelle-like nanoparticles by their amphiphilic characteristics and structures were examined by UV-Vis absorption and Fourier transform spectroscopy. The sizes of blank and ICG derivativeloaded micelles measured by dynamic light scattering were about 170 and 140 nm, respectively, which were spherical in shape with an average zeta potential of 10 mV. Further studies on the stability showed that the micellar solutions maintain their sizes at room temperature for 1 month without distinct aggregation or dissociation. ICG derivative was much better photostable after being entrapped by the new carrier. The prepared FSMCO micelles displayed a good drug loading content (11.7%), entrapment efficiency (66.5%) and sustained release rate for the model drug fluorescein. The copolymers demonstrated weeny cytotoxicity toward Bel-7402, L02 and A549 cells when incubated for 2 d. Ligands modified micelles endowed preferable cell targeting capability and beautiful cell inhibition of HCPT-FSMCO on Bel-7402 tumor cells. This kind of polymeric micelles may be a promising nanovehicle in delivering near-infrared dyes for tumors imaging and chemotherapeutic drugs for cancer therapeutics.
基金
supported by the National Natural Science Foundation of China (81071194)
the Graduate Innovation Project of Jiangsu Province (CXLX11_0795)