期刊文献+

基于马尔科夫逻辑网的句子情感分析方法 被引量:8

A Markov Logic Network Based Sentence Sentimental Analysis Method
下载PDF
导出
摘要 提出一种基于马尔科夫逻辑网的句子情感分析方法.与深度学习方法相结合实现跨领域的知识迁移,同时采用马尔科夫逻辑网将句子的上下文信息与其它情感特征相结合实现句子情感分析.在COAE评测数据上的实验结果表明,该方法与SVM分类方法相比,准确率达到70.02%,并且在跨领域的情感分析任务中也得到了较好的结果. A new method for sentence sentimental analysis based on Markov logic network is proposed. With the combination of Markov logic network and deep learning methods, it could realize the cross domain knowledge migration. By the function of Markov logic network that could combine discourse information with other sentiment features of sentence, the proposed method could also realize the sentence sentiment orientated analysis. Experimental results on COAE data show that, compared with SVM method, this method could improve the precision considerably and achieve the high precision for implementing cross-domain sentimental analysis task.
出处 《北京理工大学学报》 EI CAS CSCD 北大核心 2013年第6期600-604,共5页 Transactions of Beijing Institute of Technology
基金 北京市自然科学基金资助项目(4123094)
关键词 情感分析 马尔科夫逻辑网 深度学习 sentimental analysis Markov logic networks deep learning
  • 相关文献

参考文献10

  • 1Asher N , Farah B, Yvette Y. Distilling opinion in dis course: a preliminary study[C]//Proceedings of the International Conference on Computational Linguistics ( CoLing-2008 ). Manchester, UK Coling 2008 Organizing Committee, 2008 ..5 - 8. 被引量:1
  • 2Somasundaran S, Ruppenhofer J, Wiebe J. Discourse level opinion relations: an annotation study [ C] // Proceedings of the 9th Sigdial Workshop on Discourse and Dialogue. Columbus, Ohio: Association for Com- putational Linguistics, 2008 .. 129 - 137. 被引量:1
  • 3Bilgic M, Namata G, Getoor L. Combining collective classification and link prediction[C]//Proceedings of Workshop on Mining Graphs and Complex Structures. Omaha, USA: IEEE Computer Society, 2007.- 381 - 386. 被引量:1
  • 4Zhou L , Shi Y, Zhang D. A statistical language modeling approach to online deception detection[C]// IEEE Transactions on Knowledge and Data Engineering. New York: IEEE Computer Society, 2008 .. 1077 - 1081. 被引量:1
  • 5Zirn C , Niepert M, Stuckenschmidt H, et al. Fine- grained sentiment analysis with structural features[C]// Proceedings of the 5th International Joint Conference on Natural Language Processing. Chiang Mai, Thailand: Asian Federation of Natural Language Processing , 2011:336 - 344. 被引量:1
  • 6Richardson M, Domingos P. Markov logic networks [D]. Seattle, USA Department of Computer Science and Engineering, University of Washington, 2004. 被引量:1
  • 7Domingos P, Richardson M. Markov logic: a unifying framework for statistical relational learning [C] // Proceedings of the ICML-2004 Workshop on Statistical Relational Learning and Its Connections to Other Fields. Banff, Canada. :[-s. n. 3, 2004:49 - 54. 被引量:1
  • 8Kok S, Domingos P. Learning the structure of Markov logic networks [C] // Proceedings of the 22nd International Conference on Machine Learning. Bonn, Germany: ACM Press, 2005:441 - 448. 被引量:1
  • 9Singla P, Domingos P. Discriminative Markov logic networks [ C] ff Proceedings National Conference on Artificial Pittsburgh, USA: AAAI Press, 2005..868 training of of the 20th Intelligence. - 873. 被引量:1
  • 10Glorot X, Bordes A, Bengio Y. Domain adaptation for large-scale sentiment classification: a deep learning approach [C] // Proceedings of the Twenty-eighth International Conference on Machine Learning. Bellevue, USA: Is. n. ,2011 ..513 - 520. 被引量:1

同被引文献73

  • 1方美玉,郑小林,陈德人,华艺,施艳.商品评论聚焦爬虫算法设计与实现[J].吉林大学学报(工学版),2012,42(S1):377-381. 被引量:10
  • 2孙舒杨,刘大有,孙成敏,黄冠利.统计关系学习模型Markov逻辑网综述[J].计算机应用研究,2007,24(2):1-3. 被引量:7
  • 3刘金红,陆余良.主题网络爬虫研究综述[J].计算机应用研究,2007,24(10):26-29. 被引量:131
  • 4HanJW,KamberM,PeiJ.数据挖掘概念与技术[M].3版.范明,译.北京:机械工业出版社,2012. 被引量:4
  • 5唐慧丰,谭松波,程学旗.基于监督学习的中文情感分类技术比较研究[J].中文信息学报,2007,21(6):88-94. 被引量:136
  • 6张春霞,姬楠楠,王冠伟.受限波尔兹曼机简介[EB/OL].北京:中国科技论文在线(2013-01-11)[2015-11-14].http://www.paper,edu.cn/release- paper/content/201301-528. 被引量:2
  • 7RUSLAN S,ANDRIY M,GEOFFREY H.Restricted Boltzmann machines for collaborative filtering[C]//Proceedings of the 24th International Conference on Machine Learning.New York:ACM,2007:791-798. 被引量:1
  • 8GLOROT X,BORDES A,BENGIO Y.Domain adaptation for large-scale sentiment classification:a deep learning approach[EB/OL].[2015-02-10].http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.231.3442. 被引量:1
  • 9PANG B,LEE L,VAITHYANATHAN S.Thumbs up? Sentiment classification using machine learning techniques[C]//EMNLP 2002:Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing.Stroudsburg,PA,USA:Association for Computational Linguistics,2002,10:79-86. 被引量:1
  • 10DAVE K,LAWRENCE S,PENNOCK D.Mining the peanut gallery:opinion extraction and semantic classification of product reviews[C]//WWW 2003:Proceedings of the 12th International Word Wide Web Conference.New York:ACM,2003:519-528. 被引量:1

引证文献8

二级引证文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部