期刊文献+

突触信号传导的动态饱和模型研究 被引量:1

On Synaptic Signal Transduction in a Dynamical Saturating Model
下载PDF
导出
摘要 对一类动态饱和突触神经模型中信号传导性质进行了研究。模型的动态过程采用高阶Milstein随机微分方程解法进行求解,其信号输入输出特性用集平均互相关系数进行衡量。集平均互相关系数的数值分析结果表明,适宜的噪声能够增强信号传导,并且通过调节饱和势比值大小和突触神经群体数目,观测到噪声增强信号传导的非线性现象更加显著。 The synaptie signal transduction in a dynamical saturation neuron model is studied. At the pre-synaptic and post-synaptic stages, the evolution of neurotransmitter molecules in the syn- aptic cleft can be described by a dynamical saturation model. In the presence of noise, the signal transduction in this model is characterized by the ensemble-averaged correlation coefficient. The evolution of synaptic signal transmission is solved by the Milstein's high-order method of stochas- tic differential equation. The numerical result of the ensemble average correlation coefficient dem- onstrates the effect of noise-enhanced signal transduction in a single neuron model and an ensem- ble population of synaptic saturation neurons. Moreover, the noise-enhanced signal transduction effect is more visible by tuning the ratio of saturating current and the population of neurons.
作者 王金光
出处 《复杂系统与复杂性科学》 EI CSCD 北大核心 2013年第2期59-62,共4页 Complex Systems and Complexity Science
基金 山东省自然科学基金(ZR2010FM006)
关键词 突触神经模型 互相关系数 信号传导 噪声增强 neural synaptic model correlation coefficient signal transduction noise enhancement
  • 相关文献

参考文献15

二级参考文献52

  • 1张广军,徐健学.非线性动力系统分岔点邻域内随机共振的特性[J].物理学报,2005,54(2):557-564. 被引量:21
  • 2冷永刚,王太勇,郭焱,范胜波,王永强.基于双稳类随机共振的信息检测[J].电子与信息学报,2005,27(5):734-739. 被引量:17
  • 3Gannot S, Burshtein D, Weinstein E. Iterative and Sequential Kalman Filter-Based Speech Enhancement Algorithms. IEEE Transaction Speech and Audio Processing [J]. 1998, 6 (4) : 373-385. 被引量:1
  • 4Jabloun F, Champagne B. A Multi-Microphone Signal Subspace Approach for Speech Enhancement[C]//2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2001, 1: 205-208. 被引量:1
  • 5Fan N. Low Distortion Speech Denoising Using an Adaptive Parametric Wiener Filter[C]// 2004 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2004, 1 : 309-312. 被引量:1
  • 6Lallouani A, Gabrea M, Gargour C. Wavelet Based Speech Enhancement Using Two Different Threshold-Based Denoising Algorithms [C]// Canadian Conference on Electrical and Computer Engineering, 2004, 1: 315-318. 被引量:1
  • 7Frank M, Lawrence M, Walter G. Stochastic Resonance and Sensory Information Processing: A Tutorial and Review of Application [J ]. Clinical Neurophysiology, 2004, 115 (2) : 267-281. 被引量:1
  • 8Harmer G P, Davis B R, Abbott D. A Review of Stochastic Resonance: Circuits and Measurement [J]. IEEE Transactions on Instrumentation and Measurement, 2002, 51(2) : 299-309. 被引量:1
  • 9Nozaki D, Yamarnoto Y. Enhancement of Stochastic Resonance in a FitzHugh-Nagumo Neuronal Model Driven by Colored Noise. Physics Letters A, 1998, 243(5-6) : 281-287. 被引量:1
  • 10Vilar J, Gomila G, Rubi J. Stochastic Resonance in Noisy Nondynamical Systems[J]. Physical Review Letters, 1998, 81 (1): 14-17. 被引量:1

共引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部