期刊文献+

Numerical solutions to regularized long wave equation based on mixed covolume method 被引量:3

Numerical solutions to regularized long wave equation based on mixed covolume method
下载PDF
导出
摘要 The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes. The mixed covolume method for the regularized long wave equation is devel- oped and studied. By introducing a transfer operator γh, which maps the trial function space into the test function space, and combining the mixed finite element with the finite volume method, the nonlinear and linear Euler fully discrete mixed covolume schemes are constructed, and the existence and uniqueness of the solutions are proved. The optimal error estimates for these schemes are obtained. Finally, a numerical example is provided to examine the efficiency of the proposed schemes.
作者 方志朝 李宏
出处 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期907-920,共14页 应用数学和力学(英文版)
基金 supported by the National Natural Science Fundation of China (No. 11061021) the Science Research of Inner Mongolia Advanced Education (Nos. NJ10006, NJ10016, and NJZZ12011) the National Science Foundation of Inner Mongolia (Nos. 2011BS0102 and 2012MS0106)
关键词 regularized long wave equation mixed covolume method fully discrete optimal error estimate regularized long wave equation mixed covolume method fully discrete optimal error estimate
  • 相关文献

参考文献17

  • 1Peregrine, D. H. Calculations of the development of an undular bore. J. Fluid. Mech., 25(2), 321-330 (1996). 被引量:1
  • 2Benjamin, T. B., Bona, J. L., and Mahony, J. J. Model equations for long waves in non-linear dispersive systems. Philos. Trans. R. Soc. London Ser. A, 272, 47-48 (1972). 被引量:1
  • 3Elibeck, J. C. and McGuire, G. R. Numerical study of the RLW equation II: interaction of solitary waves. J. Comput. Phys., 23, 63-73 (1977). 被引量:1
  • 4Alexander, M. E. and Morris, J. L. Galerkin methods applied to some model equations for non- linear dispersive waves. J. Comput. Phys., 30, 428-451 (1979). 被引量:1
  • 5Sanz-Serna, J. M. and Christie, I. Petrov-Galerkin methods for non-linear dispersive wave. J. Comput. Phys., 39, 94-102 (1981). 被引量:1
  • 6Guo, B. Y. and Cao, W. M. The Fourier pseudospectral method with a restrain operator for the RLW equation. J. Comput. Phys., 74, 110-126 (1988). 被引量:1
  • 7Gardner, L. R. T., Gardner, G. A., and Dag, I. A B-spline finite element method for the regularized long wave equation. Commum. Numer. Meth. Eng., 11, 59-68 (1995). 被引量:1
  • 8Dag, I., Sakn, B., and Irk, D. Galerkin method for the numerical solution of the RLW equation using quintic B-splines. J. Comput. Appl. Math., 190, 532-547 (2006). 被引量:1
  • 9Luo, Z. D. and Liu, R. X. Mixed finite element analysis and numerical solitary solution for the RLW equation. SIAM J. Numer. Anal., 36, 189-204 (1999). 被引量:1
  • 10Guo, L. and Chen, H. H1-Galerkin mixed finite element method for the regularized long wave equation. Computing, 77, 205-221 (2006). 被引量:1

同被引文献8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部