期刊文献+

基于粒子群优化支持向量回归机的黄金价格预测模型 被引量:6

Gold price forecasting model based on regression with support vector machine for particle swarm optimization
下载PDF
导出
摘要 为了克服神经网络存在的收敛速度慢、容易陷入局部极值等缺点,提出基于粒子群优化支持向量机(PSO-SVM)的黄金价格预测方法,以影响黄金价格的美元走势、世界黄金储备、石油价格等因素为输入,黄金价格为输出.用粒子群优化算法选择合适的支持向量机参数,对支持向量回归机进行训练.应用训练完成的支持向量回归机预测下一年的黄金价格.结果证明,PSO-SVM的预测精度高于BP神经网络,PSO-SVM适用于黄金价格预测. In order to overcome the defect of neural network such as slow convergence rate and tendency to fall into local minimum, a gold price forecasting method was presented that based on p~ ticle swarm op- timization with support vector machine (PSO-SVM), where the dollar trend, world gold reserves, oil price and other factors that have influence on gold price were taken as input, and the gold price was taken as output. The particle swarm optimization algorithm was employed to select the appropriate parameters of support vector machine and the support vector regressive machine was trained. Then, the trained sup- port vector regressive machine was used to forecast the gold price in next year. The result showed that the forecasting accuracy with PSO-SVM was higher than that with BP neural network and PSO-SVM was ap- plicable for gold price forecast.
出处 《兰州理工大学学报》 CAS 北大核心 2013年第3期65-69,共5页 Journal of Lanzhou University of Technology
基金 宁夏自然科学基金(NZ12228) 宁夏高等学校科学研究项目(NJ201279 NJ201233681) 宁夏师范学院创新团队资助项目(ZY201212) 宁夏师范学院重点项目(ZD201311)的资助
关键词 粒子群算法 支持向量机回归 黄金价格 参数优化 统计学习理论 particle swarm algorithm support vector machine regression gold price parameter optimi-zation statistical learning theory
  • 相关文献

参考文献11

二级参考文献26

共引文献98

同被引文献73

引证文献6

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部