期刊文献+

平台式惯导系统方位调制的转速优化 被引量:5

Azimuth modulation rotating speed optimization of platform inertial navigation system
下载PDF
导出
摘要 通过周期调制水平惯性组件误差,方位旋转调制技术有效地降低了水平陀螺漂移和加速度计零偏对系统工作精度的不利影响,提高了惯导系统的导航精度。研究了基于方位旋转的平台式惯导系统误差模型,推导了系统误差与主要误差源之间的解析表达式。在此基础上,详细分析了转速对速度误差、位置误差和航向误差等主要指标调制效果的影响。分析表明:当转速从30(°)/h增加到60(°)/h时,速度误差变大,位置和航向误差中的旋转周期振荡急剧减小,其中位置误差中的旋转周期振荡幅度减小了55.08%;但当转速超过60(°)/h时,位置和航向误差中的旋转周期振荡减小程度很小,效果微弱,而速度误差继续增大。综合考虑转速对三项误差参数的影响,方位调制转速取60(°)/h为宜。 By periodicly modulating the errors of level inertial measurement unit, the azimuth rotating modulation technique can effectively suppress the adverse effect of level gyro drifts on the precision of inertial navigation. Through analyzing the error model of azimuth rotating-based platform inertial navigation system, the analytical expressions between systematic errors and main error sources are derived, and then the influence of rotating speed on modulation effect is analyzed. The analysis results show that: when the rotating speed increases from 30 (°)/h to 60 (°)/h, the velocity error will increase, and the periodic oscillation of position and course errors decrease sharply, with the position error oscillation reduces by about 55.08%;However, when the rotating speed is faster than 60 (°)/h, the periodic oscillations of position and course have little decrease, but the velocity error continues to increase. Through comprehensive analyzing the modulation effects on velocity, position and course, it is shown that 60 (°)/h is the most reasonable rotating velocity for the azimuth rotating platform inertial navigation system.
出处 《中国惯性技术学报》 EI CSCD 北大核心 2013年第3期312-317,共6页 Journal of Chinese Inertial Technology
基金 海装预研项目(101050601)
关键词 旋转调制技术 平台式惯导系统 转速优化 误差分析 rotation modulation technique platform inertial navigation system rotating speed optimization error analysis
  • 相关文献

参考文献6

二级参考文献19

  • 1胡健,周百令,程向红.考虑载体弹性变形的两种传递对准方法的对比研究[J].中国惯性技术学报,2005,13(4):14-17. 被引量:8
  • 2张鹏飞,龙兴武.机抖激光陀螺捷联系统中惯性器件的温度补偿的研究[J].宇航学报,2006,27(3):522-526. 被引量:20
  • 3Levinson E,Giovanni C S.Laser gyro potential for long endurance marine navigation[C]//IEEE Position Location and Navigation Symposium.1980:115-129. 被引量:1
  • 4Joint Staff,Washington D C.20318-06002003 CJCS[Z].Master Positioning,Navigation,and Timing Plan,31 March 2003. 被引量:1
  • 5龙兴武,汤建勋,王宇,等.船用激光陀螺惯导系统的研制[C]//中国惯性技术学会第六届学术年会论文集,2008:15-23. 被引量:7
  • 6Titterton D H,Weston J L.strapdown inertial navigation technology[M].Second Edition.MIT Lincoln Laboratory,Lexington,Massachusetts,2004. 被引量:1
  • 7De Wall J,May M B,Carvil J,Downs S,Eyth J.Ship augmented gravity enhancement (SAGE)[C] // IEEE PLANS,2006. 被引量:1
  • 8Levinson D E,Majure R.Accuracy enhancement techniques applied to the marine ring laser inertial navigator(MARLIN)[J].Journal of The Institute of Navigation,1987,34:71. 被引量:1
  • 9Lahham J I,Wigent D J,Coleman A L.Tuned support structure for structure-borne noise reduction of inertial navigator with dithered ring laser gyros (RLG)[C] // Proceeding of IEEE Position Location and Navigation Symposium,2000:419-428. 被引量:1
  • 10Levinson E,ter Horst J,Willcocks M.The next generation marine inertial navigator is here now)[C] // Proceeding of IEEE Position Location and Navigation Symposium,1994:121-127. 被引量:1

共引文献56

同被引文献24

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部