期刊文献+

基于统计学习的P2P节点选择算法 被引量:1

Node selection algorithm based on P2P statistical analysis
下载PDF
导出
摘要 节点选择算法是影响P2P系统带宽利用率和吞吐量的关键技术之一。P2P应用存在逻辑路径和物理路径之间不一致、忽略了覆盖网拓扑与底层网络拓扑之间的关系等问题。邻居节点间上传和下载能力、稳定性会影响传输速率。针对这一问题提出基于统计学习的方法构建邻居网络,同时优先选择上传能力强、稳定性好的邻居节点。计算机仿真实验表明,新算法能显著提高P2P系统的整体吞吐量,减少用户的平均下载时间,从而有效地改善P2P系统的整体性能。 Node selection algorithm is one of the key technologies which affect the P2P system bandwidth utilization and throughput. Neighbor node selection algorithm based on IP address information library provided by the network operator (ISP), the location information is inaccurate or not timely updated. Neighbor upload and download capabilities, and stability will affect the transmission rate. In this paper, the method based on statistical analysis was proposed to build neighbor network, while giving priority to select the neighbors with good upload ability and stability. The computer simulation results show that the new algorithm significantly improves the overall throughput of the P2P system, reduces the average download time for the user, thus effectively improving the overall performance of P2P systems.
出处 《计算机应用》 CSCD 北大核心 2013年第A01期8-10,共3页 journal of Computer Applications
关键词 点对点 节点选择算法 统计学习 吞吐量 P2P node selection algorithm statistical analysis throughput
  • 相关文献

参考文献9

  • 1汪燕,柳斌.BitTorrent协议分析及控制策略[J].实验技术与管理,2006,23(1):54-56. 被引量:9
  • 2WEI S, MIRKOVIC J, KISSEL E. Profiling and clustering Internethosts [ C]// DMIN'06: Proceedings of the International Conferenceon Data Mining. Las Vegas: [ s. n. ], 2006 : 269 - 275. 被引量:1
  • 3CHEN H T, GONG Z H,HUANG Z C. Parallel downloading algo-rithm for large-volume file distribution [ C ] // Proceedings of theSixth International Conference on Parallel and Distributed Compu-ting, Applications and Technologies. Washington, DC: IEEE Com-puter Society, 2005:745 -749. 被引量:1
  • 4WONG B, SUVKINS A, SIRER E. Meridian: a lightweight net-work location service without virtual coordinates [ C]// Proceedingsof SIGC0MMX)5. New York: ACM, 2005:85 -96. 被引量:1
  • 5李航著..统计学习方法[M].北京:清华大学出版社,2012:235.
  • 6COVER T, HART P. Nearest neighbor pattern classification[ J].IEEE Transactions on Information Theory, 1967, 13( 1): 21 -27. 被引量:1
  • 7WEINBERGER K Q, SAUL L K. Distance metric learning for largemargin nearest neighbor classification [ J]. The Journal of MachineLearning Research,2009,10: 207 -244. 被引量:1
  • 8GiudiciP.实用数据挖掘[M].北京:电子工业出版社,2004.. 被引量:5
  • 9于斌等编著..NS2与网络模拟[M].北京:人民邮电出版社,2007:218.

二级参考文献5

  • 1Adar E,Huberman B A.Free riding ongnutella[ J ].First Monday,2000,5 (10). 被引量:1
  • 2Barab'asi A L.Linked:The New Science of Networks[ M].Perseus Publishing,2002. 被引量:1
  • 3Castro M.Splitstream:High-bandwidth content distribution in cooperative environments[ A ].In Proceedings of IPTPS03[ C ],Berkeley,USA,Feb.2003. 被引量:1
  • 4Maymounkov P,Mazieres D.Kademlia:A peer-to-peer information system based on the xor metric[ A ].In Proceedings of IPTPS02[ C],Cambridge,USA,Mar.2002. 被引量:1
  • 5Cohen B.Incentives Build Robustness in BitTorrent[Z/OL].http://www.bittorrent.com. 被引量:1

共引文献12

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部