期刊文献+

基于参考点的大规模本体扩散映射算法 被引量:13

Anchor Based Flood Mapping Algorithm for Large-scale Ontology
下载PDF
导出
摘要 目前针对大规模本体映射大多采用先分块,再在分得的小块间进行块内映射.但是,对大本体进行分块,以及对相关小块的映射操作会增加很大的开销.本文采用基于参考点的扩散映射算法,通过小模块快速获得参考点(在名称上相似的概念),利用访问局部性原理,通过比较参考点附近的邻居概念,逐渐向其邻居扩散映射.根据邻居概念的映射情况检查参考点是否为错误映射,且映射的邻居概念成为新的参考点.然后对新的参考点迭代进行扩散映射,直到所有概念都扩散完毕或者找不到新的参考点为止.显然,该方法把候选映射概念集始终限制在参考点附近,极大的减少了映射的时间复杂度.本文算法支持从目标本体到源本体的1:n映射;支持参考点的自动生成;带冲突避免的映射操作能同时提高映射效率和质量. The existing large-scale ontologies strategies are mostly based on partition and then mapping in the small segmented blocks.How ever,the process of partitioning and finding related segmented blocks is time-consuming.Therefore,a anchor based flood mapping algorithm is proposed,w hich starts off w ith an anchor,a pair of " look-alike" concepts from each ontology,gradually checking old anchors and exploring new anchors by comparing concepts around the anchors taking advantage of locality of reference in the RDF directed graph.The process is repeated after new anchor is gained until there is no new anchor found.Obviously,the candidate sets for comparison are restricted around the anchors all along,hence,time complexity is greatly reduced by minimizing the comparisons betw een entities.Most importantly,in our algorithm,most 1: n mappings from the target ontology to the source ontology can be discovered;anchor auto-search module is designed;flood operation w ith collision avoidance can improve both mapping efficiency and quality.
出处 《小型微型计算机系统》 CSCD 北大核心 2013年第7期1507-1513,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(60970096)资助
关键词 大规模本体 扩散算法 本体映射 参考点 large-scale ontology flood algorithm ontology mapping anchor
  • 相关文献

参考文献1

二级参考文献1

共引文献3

同被引文献76

  • 1孙晓东,焦玥,胡劲松.基于灰色关联度和理想解法的决策方法研究[J].中国管理科学,2005,13(4):63-68. 被引量:158
  • 2黄果,周竹荣.基于领域本体的概念语义相似度计算研究[J].计算机工程与设计,2007,28(10):2460-2463. 被引量:67
  • 3BERNERS-LEE T.Semantic Web road map[EB/OL].(1998).http://www.w3.org/DesignIssues /Semantic.html. 被引量:1
  • 4STUDER R, BENJAMINS V R, FENSEL D.Knowledge enginee-ring:principles and methods[J].Data and Knowledge Enginee-ring,1998,25(122):161-197. 被引量:1
  • 5DOAN A, MADHAVAN J, DOMINGOS P, et al.Learning to map between ontologies on the semantic Web[C]//Proc of the 11th International World Wide Web Conference.2002:662-673. 被引量:1
  • 6JEAN-MARY Y, KABUKA M.ASMOV results for OAEI 2007[C]//Proc of International Semantic Web Conference on Tology Matching Workshop.2007. 被引量:1
  • 7LI Juan-zi, TANG Jie, LI Yi, et al.RiMOM:a dynamic multistrategy ontology alignment framework[J].Trans on Knowledge and Data Engineering,2009,21(8):1218-1232. 被引量:1
  • 8ZHANG Ling-yu, MA Z M.ICFC:a method for computing semantic similarity among fuzzy concepts in a fuzzy ontology[C]//Proc of IEEE International Conference on Fuzzy Systems.2012:1-8. 被引量:1
  • 9MADHAVAN J, BERNSTEIN P, RAHM E.Generic schema matching with cupid[C]//Proc of International Conference on Very Large Databases.2001:49-58. 被引量:1
  • 10EIDOON Z, YAZDANI N, OROUMCHIAN F.Ontology matching using vector space[C]//Proc of the 30th European Conference on Advances in Information Retrieval.2008:472-481. 被引量:1

引证文献13

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部