期刊文献+

Al-2%Cu二元合金微观组织模拟中液相扩散系数的计算 被引量:3

Calculation of liquid phase diffusion coefficient in microstructure simulation of Al-2%Cu binary alloy
下载PDF
导出
摘要 采用改进的Miedema模型和Eyring模型,对Al-2%Cu合金的液相扩散系数进行理论计算,建立了二元合金液相扩散系数的理论计算模型,解决实验难以测量液相扩散系数导致数据匮乏的难题。在Eyring模型中,引入液态合金黏度—时间的变化曲线,替代原模型中的溶剂黏度数值,以进一步提高计算结果的准确性。在微观组织模拟中,基于常规恒定液相扩散系数模拟结果的柱状晶比例为20.1%,而基于本研究计算所得的液相扩散系数曲线模拟结果的柱状晶比例为64.8%,更接近实验测得的柱状晶比例58.1%,很好地验证了液相扩散系数理论计算模型的可行性和准确性。 The liquid phase diffusion coefficient of A1-2%Cu alloy was calculated with the modified Miedema model and Eyring model, to further improve the accuracy. The mathematical model of liquid phase diffusion coefficient in binary alloy was established to resolve the lack of liquid phase diffusion coefficient data that are difficult to measure in the experiment. Instead of the solvent viscosity value, the viscosity--temperature curve of liquid alloy was introduced into the Eyring model to increase the accuracy of calculation. In the microstructure simulation, the simulated proportion of columnar grains based on the normal constant liquid phase diffusion coefficient is 20.1%; while the proportion of columnar grains based on the calculated liquid phase diffusion coefficient with the developed model is 64.8%, which is much closer to the experimental result of 58.1%, indicating that the mathematical model of liquid phase diffusion coefficient is feasible and accurate.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2013年第5期1189-1194,共6页 The Chinese Journal of Nonferrous Metals
基金 国家"十二五"科技支撑计划项目(2011BAG03B02) 国家自然科学基金面上项目(51075132) 湖南大学汽车车身先进设计与制造国家重点实验室自主课题资助项目(61075005)
关键词 AL-CU合金 MIEDEMA模型 Eyring模型 扩散系数 微观组织 A1-Cu alloy Miedema model Eyring model diffusion coefficient microstructure
  • 相关文献

参考文献18

二级参考文献120

共引文献56

同被引文献26

  • 1黄安国,余圣甫,李志远.焊缝金属凝固组织元胞自动机模拟[J].焊接学报,2008,29(4):45-48. 被引量:21
  • 2孙顺平,易丹青,臧冰.基于Miedema模型和Toop模型的Al-Si-Er合金热力学参数计算[J].稀有金属材料与工程,2010,39(11):1974-1978. 被引量:10
  • 3Sen Luo,Miao Yong Zhu.A two-dimensional model for the quantitative simulation of the dendritic growth with cellular automaton method[J].Computational Materials Science.2013 被引量:1
  • 4H?kan Hallberg,Matti Ristinmaa.Microstructure evolution influenced by dislocation density gradients modeled in a reaction–diffusion system[J].Computational Materials Science.2013 被引量:1
  • 5Andrés Anca,Alberto Cardona,José Risso,Víctor D. Fachinotti.Finite element modeling of welding processes[J].Applied Mathematical Modelling.2010(2) 被引量:1
  • 6H. Yin,S.D. Felicelli.Dendrite growth simulation during solidification in the LENS process[J].Acta Materialia.2009(4) 被引量:1
  • 7Junjie Li,Jincheng Wang,Gencang Yang.Phase-field simulation of microstructure development involving nucleation and crystallographic orientations in alloy solidification[J].Journal of Crystal Growth.2007(1) 被引量:1
  • 8Yizhu He,Hanlin Ding,Liufa Liu,Keesam Shin.Computer simulation of 2D grain growth using a cellular automata model based on the lowest energy principle[J].Materials Science & Engineering A.2006(1) 被引量:1
  • 9Y.C. Liu,F. Sommer,E.J. Mittemeijer.The austenite–ferrite transformation of ultralow-carbon Fe–C alloy; transition from diffusion- to interface-controlled growth[J].Acta Materialia.2006(12) 被引量:1
  • 10C Beckermann,H.-J Diepers,I Steinbach,A Karma,X Tong.Modeling Melt Convection in Phase-Field Simulations of Solidification[J].Journal of Computational Physics.1999(2) 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部