摘要
线阵CCD(charge coupled device)卫星原始数据普遍存在由于传感器响应不均匀或CCD拼接所造成的周期性条带噪声,降低了卫星图像的质量和应用效果。在分析线阵CCD卫星图像噪声特性的基础上,采用基于灰度统计的自适应空间滤波方法,进行基于BJ-1卫星和CBERS-02卫星原始图像的条带噪声去除实验,并与直方图匹配、频域滤波等去条带噪声算法相比较。实验结果表明,此方法可有效去除列条带噪声,并均衡CCD响应差异,从而改善图像质量。
Periodic stripe noise is an obvious phenomenon in linear-array CCD satellite raw image because of response difference and stitching among CCD detectors, which reduces image quality and application effects. On the basis of analysis of noise characteristics within linear-array CCD satellite image, this paper adopts adaptive spatial filtering algorithm based on gray statistic to remove stripe noise in BJ-1 satellite raw image and CBERS-02 satellite raw image. After comparison to the process- ing results of histogram matching de-striping algorithm and frequency filtering de-striping algorithm, the results show that this algorithm can effectively demolish vertical stripes in ALOS satellite imagery and balance response difference among CCD detectors to improve the images quality.
出处
《装备学院学报》
2013年第3期105-108,共4页
Journal of Equipment Academy
基金
国家高技术发展计划资助项目