期刊文献+

基于免疫克隆高斯过程隐变量模型的SAR目标特征提取与识别 被引量:3

Gaussian process latent variable model based on immune clonal selection for SAR target feature extraction and recognition
下载PDF
导出
摘要 作为一种非线性维数约减算法,高斯过程隐变量模型(Gaussian process latent variable model,GPLVM)由于其适合处理小样本、高维数据,因而在模式识别、计算机视觉等领域得到了广泛应用.基于此,提出一种基于改进GPLVM的SAR图像目标特征提取及自动识别方法,其中利用改进的GPLVM进行特征提取,高斯过程分类进行目标识别.传统GPLVM使用共轭梯度法对似然函数进行优化,为避免梯度估值易受噪声干扰、步长对算法影响严重等缺点,提出基于免疫克隆选择算法的GPLVM,利用其具有快速收敛到全局最优的特性提高算法性能.实验结果表明,该算法不仅降低了特征维数,且提高了识别精度,从而验证了算法用于SAR图像目标识别的有效性. As a nonlinear dimension reduction algorithm, Gaussian process latent variable model (GPLVM) has been widely applied in pattern recognition and computer vision for its capability in dealing with small size and high-dimension- al samples. As GPLVM can discover low-dimensional manifolds in high-dimensional data given only a small number of samples, a new SAR target recognition method was proposed, in which a modified GPLVM was used for feature extrac- tion and Gaussian process classification was employed as the classifier. In GPLVM, the likelihood was optimized by u- sing the scaled conjugate gradient. In order to avoid the noise effect to gradient estimate and overcome the disadvantage that the performance is severely affected by the step length, the immune clone selection algorithm based GPLVM was de- veloped for target feature extraction where the immune clonal selection algorithm characterized by rapid convergence to global optimum was utilized to improve the performance. The experimental results show that the method not only reduces the dimension but also gets higher accuracy.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2013年第3期231-236,共6页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(61272282 61072106 61203303 61272279) 陕西省自然科学基金(2011JQ8020) 中央高校基本科研业务费专项资金资助(JY10000902001 JY10000902045 K50511020011)~~
关键词 高斯过程隐变量模型 免疫克隆选择算法 特征提取 SAR图像目标识别 Gaussian process latent variable model immune clonal selection algorithm featrue extraction SAR target recognition
  • 相关文献

参考文献18

  • 1焦李成,王爽,侯彪.SAR图像理解与解译研究进展[J].电子学报,2005,33(B12):2423-2434. 被引量:6
  • 2王世晞,贺志国.基于PCA特征的快速SAR图像目标识别方法[J].国防科技大学学报,2008,30(3):136-140. 被引量:16
  • 3YANG Y, QIU Y, LU C, Automatic target classification ex- periments on the MSTAR SAR images [ C , Proceedings ofthe Sixth International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing, 2005. 被引量:1
  • 4TIPPLING d E, BISHOP C M, Probabilistic principal com- ponent analysis [J]. Journal of the Royal Statistical Socie- ty, 1999, 6(3) : 611 -622. 被引量:1
  • 5韩萍,吴仁彪,王兆华,王蕴红.基于KPCA准则的SAR目标特征提取与识别[J].电子与信息学报,2003,25(10):1297-1301. 被引量:54
  • 6WANG X M, GAO X B. et al. Semi-supervised Gaussian process latent variable model with pairwise constraints [ J]. Neurocomputing, 2010, 73(10-12), 2186-2195. 被引量:1
  • 7LAWRENCE N D, Probabilistic non-linear principal compo- nent analysis with Gaussian process latent variable models [ J ], Journal of Machine Learning Research, 2005, 6, 1783 - 1816. 被引量:1
  • 8LAWRENCE N D. Gaussian process latent variable models for visualization of high dimensional data [ C ] , Advances in Neural Information Processing Systems (NIPS), 2004. 被引量:1
  • 9焦李成,杜海峰.人工免疫系统进展与展望[J].电子学报,2003,31(10):1540-1548. 被引量:224
  • 10DU H F, JIAO L C, WANG S A. Clonal operator and an- tibody clone algorithms I C ] , Proceedings of 2002 Interna- tional Conference on Machine Learning and Cybernetics, 2002. 被引量:1

二级参考文献170

共引文献300

同被引文献36

  • 1Li B, Ohellappa R, Zheng Q, et al. Experimental evalua- tion of forward-looking data set automatic target recogni- tion approaches-a comparative study[J]. Computer Vi- sion and Image Understanding,2001,84(1) :5-24. 被引量:1
  • 2Zhang H,Li J,Xu B B. An automatic target recognition al- gorithm based on support vector machine [J]. Applied Mechanics and Materials, 2014,496 : 1873-1876. 被引量:1
  • 3Gong J,Fan G,Yu L,et al. Joint view-identity manifold for infrared target tracking and recognition[J] Computer Vi- sion and Image Understanding, 2014, 118 : 211-224. 被引量:1
  • 4Patel V M,Nasrabadi N M,Ohellappa R. Sparsity-motiva- ted automatic target recognition [J]. Applied Optics, 2011,50(10) :1425-1433. 被引量:1
  • 5Wright J,Yang A Y,Ganesh A,et al. Robust face recogni- tion via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31 (2) :210-227. 被引量:1
  • 6Ojala T, Pietik. inert M,Hardwood D. A comparative study of texture measures with classification based on feature distributio[J]. Pattern Recognition, 1996,29 ( 1 ) : 51-59. 被引量:1
  • 7Pietikainen M. Computer vision using local binary patterns [M]. London Ltd: Springer, 2011. 被引量:1
  • 8Ojala T, Pietikainen M, Maenpa/JT. Multiresolution gray- scale and rotation invariant texture classification with Lo- cal Binary Patterns[J]. IEEE Transactions on Pattern A- nalysis and Machine Intelligence, 2002,24(7) : 971-987. 被引量:1
  • 9Liao S,Chung A C S. Face recognition by using elongated local binary patterns with average maximum distance gradient magnitude[A]. Proc. of the 8th Asian conference on Computer vision (ACCV 2007)l-00 2007,2:672-679. 被引量:1
  • 10Nanni L,Lumini A,Brahnam S. Local binary patterns vari- ants as texture descriptors[J]. Artificial intelligence in 125. for medical image analysis medicine, 2010,49 (2) : 117. 被引量:1

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部