期刊文献+

基于共源方法的管中导波缺陷成像研究 被引量:5

DEFECT IMAGING IN PIPE WITH GUIDED WAVE USING COMMON SOURCE METHOD
原文传递
导出
摘要 理论分析了管中L(0,2)模态导波的激发特性,将在不同圆周位置接收的缺陷反射声场分解为L(M,2)模态簇,通过数值频散补偿方法实现所分解信号的时间-空间变换,并用变换后的信号实现管中导波缺陷成像。采用有限元仿真研究了激励源的选择对管中周向导波的抑制作用,以指导实际检测中激励换能器阵列阵元分布。实验研究了实现该成像方法的激励和接收压电晶片的配置,并对含单、双槽型裂纹缺陷的管道进行成像,验证了该方法的有效性。结果表明,该方法可实现管中裂纹缺陷的轴向及周向定位,为实现管道健康状况监测打下基础。 Generation characteristics of L(0,2) mode are theoretically studied, the reflected acoustic field is recorded on different circumferential positions and decomposed into a L(M,2) modal cluster, numerical dispersion compensation technique has been employed to implement a time-space transform of the decomposed signals, and the defect imaging is achieved with the transformed signals. In order to restrain circumferential guided waves, the selection of exciting sources is studied by FE and the results are used to set the distribution of elements in a transducer array. The configuration method of exciting and receiving piezoelectric wafers is studied to achieve the imaging algorithm. The validation of the algorithm is experimentally verified using pipes through thickness cracks and dual-defects. The results show that the method can locate the axial and circumferential position of cracks and can be used as the technical foundation of pipe health monitoring.
出处 《工程力学》 EI CSCD 北大核心 2013年第6期288-294,300,共8页 Engineering Mechanics
基金 国家自然科学基金项目(10772009)
关键词 管道 导波 L(M 2)模态簇 时间-空间变换 缺陷成像 pipe guided wave L(M,2) modal cluster time-space transform defect imaging
  • 相关文献

参考文献15

  • 1刘增华,余锋祥,宋国荣,何存富,吴斌.基于非参数Snakes的时频重排方法在钢绞线导波模态识别中的应用[J].机械工程学报,2011,47(8):47-53. 被引量:4
  • 2Wilcox P, Lowe M, Cawley P. Omnidirectional guided wave inspection of large metallic plate structures using an EMAT array [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52(4): 653--665. 被引量:1
  • 3Yu L Y, Giurgiutiu V. In situ 2-D piezoelectric wafer active sensors arrays for guided wave damage detection [J]. Ultrasonics, 2008, 48(2): 117--134. 被引量:1
  • 4Hayashi T, Murase M. Defect imaging with guided waves in pipe [J]. Journal of the Acoustical Society of America, 2005, 117(4): 2134--2140. 被引量:1
  • 5Davies J, Cawley P. The application of synthetic focusing for imaging crack-like defects in pipelines using guided waves [J]. IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control, 2009, 56(4): 759--771. 被引量:1
  • 6Davies J, Cawley P. The application of synthetically focused imaging techniques for high resolution guided wave pipe inspection [J]. Review of Quantitative Nondestructive Evaluation, 2007, 26:681 -- 688. 被引量:1
  • 7Velichko A, Wilcox P. Post-processing of guided wave array data for high resolution pipe inspection [J]. Journal of the Acoustical Society of America, 2009, 126(6): 2973 --2982. 被引量:1
  • 8Shelke A, Kundu T, Amjad U. Mode-selective excitation and detection of ultrasonic guided waves for delamination detection in laminated aluminum plates [J]. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2011, 58(3): 567-- 577. 被引量:1
  • 9Auld B A. Acoustic fields and waves in solid [M]. Florida: Krieger Publishing Company, 1990: 104-- 114. 被引量:1
  • 10Sun Z Q, Zhang L, Rose J L. Guided wave focusingmechanics in pipe [J]. Journal of Pressure Vessel Technology, 2005, 127:471 --478. 被引量:1

二级参考文献29

  • 1刘增华,何存富,杨士明,王秀彦,吴斌.充水管道中纵向超声导波传播特性的理论分析与试验研究[J].机械工程学报,2006,42(3):171-178. 被引量:45
  • 2吴斌,邓菲,何存富,李隆涛.时频重排方法在管道导波信号处理中的应用[J].无损检测,2006,28(7):337-340. 被引量:2
  • 3王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504. 被引量:40
  • 4NIETHAMMER M, JACOBS L J, QU J, et al. Time- frequency representation of Lamb waves using the reassigned spectrogram[J]. Journal of Acoustical Society of America, 2000, 107(5): L19-L24. 被引量:1
  • 5AUGER F, FLANDRIN E Improving the readability of time-frequency and time-scale representations by the reassignment method[J]. IEEE Transactions on Signal Processing, 1995, 43(5): 1068-1089. 被引量:1
  • 6KASS M, WITK1N A, TERZOPOULOS D. Snakes: Active contour models[J]. International Journal of Computer Vision, 1987, 1(4): 321-331. 被引量:1
  • 7OZERTEM U, ERCLOGMUS D. Nonparametric snakes[J]. IEEE Transactions on Image Processing, 2007, 16(9): 2361-2368. 被引量:1
  • 8MULLER K R, MIKA S, RATSCH G, et al. An introduction to kernel-based learning algorithms[J]. IEEE Transactions on Neural Networks, 2001, 12(2): 181-201. 被引量:1
  • 9SMOLAA J. Learning with kernels[D]. Berlin: Technical University of Berlin, 1998. 被引量:1
  • 10PARZEN E. On estimation of a probability density function and mode[J]. The Annals of Mathematical Statistics, 1962, 33(3): 1065-1076. 被引量:1

共引文献16

同被引文献37

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部