期刊文献+

荻实生苗生物构件对土壤水分胁迫的响应 被引量:5

Study on the adaptability of Misconstrues sacchariflorus biological components to soil water stress
下载PDF
导出
摘要 以荻(Miscanthus sacchariflorus)实生苗为研究对象,对其生物学构件在轻度、中度和重度水分胁迫下的响应进行了研究。结果表明,随着土壤含水量的下降,荻的株高、茎粗、茎节间长度、叶面积、比叶重、地下茎茎粗、地下茎分布深度、地下茎节间长度、地上及地下部分生物量和冠根比均随之下降;荻可以适应轻度的水分胁迫,在轻度水分胁迫下,除了冠根比、茎粗、叶面积和比叶重等构件外,其余生物构件与对照无显著差异(P>0.05);而在中度和重度水分胁迫下,荻生物构件均受到严重抑制,与对照差异显著(P<0.05)。 Effects of soil water stress on biological components of Misconstrues sacchariflorus were studied by using pot cultured seedlings as experimental materials, exposing them to light, moderate stress and heavy water stress. Results showed that the plant height, stem diameter, stem internode length, leaf are- a, specific leaf weight, rhizome stem diameter, rhizome distribution depth, rhizome internode length, ground and underground part biomass, and crown root ratio declined with stress increased. M. sacchari- florus can adapt to light water stress. Under light water stress, except crown root ratio, stem diameter, leaf area, specific leaf weight and member, the rest biological components(normal water supply) had no significant difference(P〈0.05), with control. Under moderate and heavy water stress, biological compo- nents were serious restrained and had significant difference (P〈0.05) with control.
出处 《草业科学》 CAS CSCD 北大核心 2013年第6期893-897,共5页 Pratacultural Science
基金 中央高校基本科研业务费专项资金项目(DL12CA11) 黑龙江省青年基金项目(QC2009C52)
关键词 生物量 比叶重 地下茎 水分胁迫 Misconstrues sacchariflorus biomass specific leaf weight rhizome water stress
  • 相关文献

参考文献27

  • 1陈守良.中国植物志:第10卷[M].北京:科学出版社,2004:4-26. 被引量:2
  • 2Heaton E A,Dohleman F G,Long S P. Meeting US biofu el goals with less land: The potential of Miscanthus[J]. Global Change Biology,2008,14(9) :2000-2014. 被引量:1
  • 3Lewandowski I,Scurlockb JM O,Lindvall E,et al. The development and current status of perennial rhizoma- tous grasses as energy crops in the US and Europe[J]. Biomass and Bioenergy, 2003,25 (4) : 335-361. 被引量:1
  • 4Glowaka K. A review of the genetic study of the energy crop Miscanthus [J]. Biomass and Bioenergy, 2011, 35(1) :2445-2454. 被引量:1
  • 5Clifton-Brown J C, Stampfl P F, Jones M B. Miscanthus biomass production for energy in Europe and its potential contribution to decreasing fossil fuel carbon emissions[J]. Global Change Biology, 2004,10(3):509-518. 被引量:1
  • 6Lewandowski I,Clifton-Brown J C, Scurlockb JM O,et al. Miscanthus:European experience with a novel ener- gy crop[J]. Biomass and Bioenergy, 2000, 19 (4): 209-227. 被引量:1
  • 7Heaton E A, Clifton-Brown J, Voigt T B, et al. Miscanthus for renewable energy generation: European union experi- ence and projections for Illinois[J]. Mitigation and Adaptation Strategies for Global Change,2004,9(4) :433-451. 被引量:1
  • 8Stewart J R,Toma Y,Fernandez F G,et al. The ecology and agronomy of Miscanthus sinensis,a species important to hio-energy crop development, in its native range in Japan, a review[J]. Global Change Biology, 2009,1 (2) : 126-153. 被引量:1
  • 9Clifton-Brown J C, Lewandowski I, Andersson B, et al. Performance of 15 Miscanthus genotypes at five sites in Europe[J]. Agronomy Journal, 2001, 93 (5): 1013- 1019. 被引量:1
  • 10Lewandowski I, Schmidt U. Nitrogen, energy and land use efficiencies of Miscanthus, reed canary grass and triticale as determined by the boundary line approach[J]. Agriculture Ecosystems Environment, 2006, 112(2) :335-346. 被引量:1

二级参考文献215

共引文献554

同被引文献112

引证文献5

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部