摘要
A theoretical introduction of saturable absorber based on standing-wave saturation effects as a transient fiber Bragg grating (FBG) was presented. The central wavelength of the transient FBG was located in 2 μm. The factors affecting the bandwidth and the reflectivity of the transient FBG were analyzed. The linewidth and reflectiv- ity as the function of doped fiber length and doping concentration were correspondingly simulated by Matlab software. It was found that the larger the doping concentration and the fiber length were, the smaller the bandwidth was. These results suggest that the performance of the transient FBG can be optimized by choosing the appropriate length of doped fiber and the larger doping concentration, which can be used as a reference for the narrow-linewidth fiber laser around 2 μm.
A theoretical introduction of saturable absorber based on standing-wave saturation effects as a transient fiber Bragg grating (FBG) was presented. The central wavelength of the transient FBG was located in 2 μm. The factors affecting the bandwidth and the reflectivity of the transient FBG were analyzed. The linewidth and reflectiv- ity as the function of doped fiber length and doping concentration were correspondingly simulated by Matlab software. It was found that the larger the doping concentration and the fiber length were, the smaller the bandwidth was. These results suggest that the performance of the transient FBG can be optimized by choosing the appropriate length of doped fiber and the larger doping concentration, which can be used as a reference for the narrow-linewidth fiber laser around 2 μm.
基金
This work was supported by the National Natural Science Foundation of China (Grant Nos. 61275083, 61290315).