期刊文献+

支持向量机近似模型在船舶性能不确定度分析中的应用(英文) 被引量:2

A Lease Square Support Vector Machine Metamodel for Ship Performance in Uncertainty Quantification Study
下载PDF
导出
摘要 棒性优化和可靠性优化中进行的不确定度分析需要大量的样本计算。当利用高精度分析工具时,其代价非常高昂。作为高精度模拟工具的近似,近似模型具有其高效性。文章基于最小二乘支持向量机(LSSVM)理论,提出了一种描述船舶性能的近似模型,分别在一维和二维不确定度分析中,验证了其精度及收敛性,并对其在不确定分析中的收敛性能进行了研究。文中结论可以为研究人员和工程师在不确定分析、鲁棒性优化和可靠性优化中提供一种新的选择。 Serving in robust design optimization (RDO) and reliability-based design optimization (RB- DO), the uncertainty quantification (UQ) requires a large number of samples, which is very expen- sive when using high-fidelity simulation tools. As an approximation of expensive high-fidelity simu- lation codes, the metamodel has its high efficiency. This study proposes a metamodel for ship per- formance based on lease square support vector machine (LS-SVM), validates the accuracy of the metamodel in 1D and 2D UQ studies and demonstrates the convergence of accuracy and UQ perfor- mance. The results of this study could provide researchers and engineers an option in UQ study, RDO and RBDO.
作者 贺伟 邹早建
出处 《船舶力学》 EI CSCD 北大核心 2013年第6期604-615,共12页 Journal of Ship Mechanics
基金 Supported by the National Nature Science Foundation of China (under grant No.50979060) China Scholarship Council
关键词 不确定度分析 最小二乘支持向量机 拟合 近似模型 收敛性 UQ LS-SVM regression metamodel convergence
  • 相关文献

参考文献10

  • 1Diez M, He W, Campana E F, Stem F. Deterministic and multivariate stochastic uncertainty quantification for the Delft catamaran with variable Froude number and/or geometry using URANS and potential flow solvers [J]. submitted to Computers & Fluids, 26 February 2012b. 被引量:1
  • 2Kleijnen J P C. Statistical tools for simulation practitioners[M]. Marcel Dekker Inc, 1987. 被引量:1
  • 3Iin R, Chen W, Simpson T W. Comparative studies of metamodelling techniques under multiple modeling criteria[J]. Structural Multidisciplinary Optimization, 2000, 23: 1-13. 被引量:1
  • 4Simpson T W, Peplinski J D, Koch P N, Allen J K. Metamodels for computer-based engineering design: Survey and rec- ommendations[J]. Engineering with Computers, 2001, 17: 129-150. 被引量:1
  • 5Vapnik V. The nature of statistical learning theory[M]. Springer, 1995. 被引量:1
  • 6Steinwart I, Christmann A. Support vector machines[M]. Springer, 2008. 被引量:1
  • 7Suykens J A K. Nonlinear modelling and support vector machines[C]. IEEE Instrumentation and Measurement Technology Conference, 2001. 被引量:1
  • 8Suykens J A K, Gestel T V, Brabanter J D, Moor B D, Vandewalle J. Least square support vector machines[M]. World Scientific Pub Co Inc, 2003. 被引量:1
  • 9Wang W, Xu Z, Lu W, Zhang X. Determination of the spread parameter in the Gaussian kernel for classification and re- gression[J]. Neurocomputing,2003, 55: 643-663. 被引量:1
  • 10Mousaviraad S M, He W, Diez M, Stem F. Framework for convergence and validation of stochastic UQ and relationship to deterministic V&Vwith example for a unit problem[J]. International Journal for Uncertainty Quantification, 2012, in press. 被引量:1

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部