期刊文献+

溶剂热法合成ZnSe纳米材料 被引量:5

Synthesis of ZnSe Nanomaterials via Solvothermal Method
下载PDF
导出
摘要 以乙酸锌为锌源,Na2SeO3 5H2O或Se粉为硒源,采用溶剂热法在乙醇胺(EA)溶剂中一步合成晶型和形貌可控的闪锌矿和纤锌矿结构的ZnSe纳米材料。利用X射线衍射(XRD)、能量色散X射线谱(EDS)、扫描电子显微镜(SEM)和透射电子显微镜(TEM)对产物的晶型、成分和形貌进行了表征。结果表明,Se源的选取直接决定了ZnSe纳米材料的晶型和形貌:以Na2SeO3 5H2O为源,产物为立方相闪锌矿结构的ZnSe纳米颗粒,直径30 nm左右;以Se粉为源,产物为六方相纤锌矿结构的ZnSe纳米片,厚度约50 nm。进一步的研究表明,具有合适配位能力的乙醇胺溶剂和Se源对ZnSe纳米结构的合成起重要作用。通过紫外-可见光谱(UV-Vis)和室温光致发光光谱(PL)表征了产物的光学性质。 Sphalerite or wurtzite ZnSe nanomaterials were controllably synthesized by one-step solvothermal technique using ethanol amine (EA) as solvent, zinc acetate as zinc source and Na2SeO3·5H20 or Se powder as Se source. X-ray diffraction (XRD), energy dispersive spectrum (EDS), scanning electron microscope (SEM) and transmission electron microscope (TEM) were used to characterize the structures, compositions and morphologies of the products. The results show that sphalerite ZnSe nanoparticles with the diameter of 30 nm are synthesized by adopting Na2SeO3·5H20 as Se source, while wurtzite ZnSe nanoplates with thickness of 50 nm are prepared via Se powders as Se source. The above results indicate that the structures and morphologies of the ZnSe nanomaterials are dependent on the Se sources. It is also found that EA solvent and Se source play an important role in the formation of ZnSe nanomaterials. The optical properties of the as-prepared products are characterized by UV-Vis absorption and room-temperature photoluminescence (PL) spectra.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2013年第6期579-583,共5页 Journal of Inorganic Materials
基金 国家自然科学基金(10864004,11164026) 中国博士后特别资助和博士后基金(20100471679,201104704) 西部之光联合学者项目(LHXZ200902)~~
关键词 溶剂热 ZNSE 闪锌矿 纤锌矿 solvothermal ZnSe sphalerite wurtzite
  • 相关文献

参考文献3

二级参考文献27

  • 1[1]Luo,H.;Furdyna,J.K.Semicond.,Sci.Technol.,1995,10:1041 被引量:1
  • 2[2]Whenret,B.S.J.Crystal Growth,1996,159:766 被引量:1
  • 3[4]Zhu,J.J.;Koltypin,Y.;Cxdanken, A.Chem.of Mater.,2000, 12(1):73 被引量:1
  • 4[5]Forect,T.;Quinlan,K.J.Stroeve P,Langmuir,2000,16(8): 4049 被引量:1
  • 5[6]Li,Y.D.;Ding,Y.;Qian,Y.T.;Zhang,Y.;Li,Y.Inorg. Chem.,1998,37:2844 被引量:1
  • 6[7]Zhan,J.H.;Yang,X.G.;Xie,Y.;Qian,Y.T.J.Mater.Res., 2000,15(3):629 被引量:1
  • 7[9]Ozawa,T.J.Thermal Analysis,1970,3:301 被引量:1
  • 8[10]Flynn,J.H.;Wal,L.A.J.Polym.Sci.Part B,Polymer Letters, 1966,4(3):323 被引量:1
  • 9[11]Hu,R.Z.;Yang,Z.Q.;Ling,Y,J.Thermochim. Acta,1988, 125:135 被引量:1
  • 10[12]Kissinger,H.E.Anal.,Chem.,1957,29(11):1702 被引量:1

共引文献8

同被引文献65

  • 1王大鸷,崔励,曹传宝,籍凤秋.微乳液法制备不同形貌低维硒化锌纳米晶[J].人工晶体学报,2006,35(3):470-473. 被引量:11
  • 2李军平,徐耀,赵宁,魏伟,吴东,孙予罕.ZnSe纳米片晶的可控合成[J].化学学报,2006,64(23):2339-2343. 被引量:7
  • 3ALEXIOU C, JURGONS R, SELIGER C, et al. Medical applications of magnetic nanoparticles [J]. J Nanosci Nanotechnol, 2006, 6(9/10): 2762-2768. 被引量:1
  • 4DOBSON J. Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery [J]. Gene Therapy, 2006, 13: 283-287. 被引量:1
  • 5DUGUET E, VASSEUR S, MORNET S, et al. Magnetic nanoparticles and their applications in medicine [J]. Nanomed: Nanotechnol, Biol, Med, 2006, 1: 157-168. 被引量:1
  • 6ARRUEBO M, FERNANDEZ-PACHECO R, IBARRA M R, et al. Magnetic nanoparticles for drug delivery [J]. Nano Today, 2007, 2: 2:32. 被引量:1
  • 7FEYEN M, WEIDENTHALER C, SCHUTH F, et al. Regioselectively controlled synthesis of colloidal mushroom nanostructures and their hollow derivatives[J]. J Am Chem Soc, 2010, 132:6791-6799. 被引量:1
  • 8JIANG W, ZHANG X J, SUN Z D, et al. Preparation and mechanism of magnetic carbonaceous polysaccharide microspheres by low temperature hydro thermal method[J]. J Magn Magn Mater, 2011,323: 2741-2747. 被引量:1
  • 9PAN L, LI L, XU M, et al. Synthesis and electrocatalytic property of mono-dispersed Ag/Fe304 composite microsphere[J]. Mater Sci Eng B, 2011, 176: 1123-1127. 被引量:1
  • 10ZHU Y, KASKEL S, SHI J, et al. Immobilization of Trametes versicolor laccase on magnetically separable mesoporous silica spheres [J]. Chem Mater 2007, 19(26): 6408-6413. 被引量:1

引证文献5

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部