期刊文献+

PEG-GLDPC码设计与性能分析 被引量:3

Design and Performance Analysis of PEG-GLDPC
下载PDF
导出
摘要 针对深空通信中高信道编码增益的需求,设计了一种新颖的基于按边增长(Progressive edge-growth,PEG)算法的广义低密度奇偶校验(Generalized LDPC,GLDPC)码。基于稀疏矩阵的二分图,首先改进了PEG算法用以构造规则LDPC,然后用BCH码作子码替换LDPC中的单奇偶校验码来构造PEG-GLDPC,最后重点研究了PEG-GLDPC的译码算法,提出一种联合BCH比特栅格译码与置信传播(Belief propagation,BP)算法的迭代译码机制。AWGN信道下的仿真结果表明,PEG-GLDPC译码性能优于LDPC以及传统GLDPC,适用于深空通信等低信噪比通信系统。 A novel generalized LDPC (GLDPC) code based on progressive edge-growth (PEG)algorithm is proposed to meet the demand of channel high coding gain in deep space communi- cations. Based on the bipartite graph, PEG-GLDPC takes the regular LDPC constructed with modified PEG algorithm as a base matrix, and BCH is used as component code to replace single parity check codes in LDPC. PEG-GLDPC is iteratively decoded using belief propagation (BP) algorithm with a combination of trellis-based decoding of BCH. Simulation results over an (AWGN) channel indicate that the decoding performance of PEG-GLDPC is better than those of LDPC and traditional GLDPC, and it can be applied to low SNR communication systems such as deep space communication.
出处 《数据采集与处理》 CSCD 北大核心 2013年第3期358-362,共5页 Journal of Data Acquisition and Processing
基金 国家高技术研究发展计划("八六三"计划)(2012AA121605)资助项目 国家自然科学基金(61032004 60972061)资助项目
关键词 信道编码 PEG算法 迭代译码 置信传播 最大后验概率译码 channel coding progressive edge growth algorithm iterative decoding belief propagation maximum a posteriori probability
  • 相关文献

参考文献11

  • 1傅婷婷,吴湛击,王文博.基于PEG算法的准循环LDPC码的编码构造方法[J].数据采集与处理,2009,24(B10):182-186. 被引量:5
  • 2Lentmaier M, Zigangirov K S. On generalized low- density parity check codes based on Hamming com- ponent codes [J]. IEEE Communications Letter, 1999, 3(8): 248-250. 被引量:1
  • 3Boutros J, Pothier O, Zkmort G. Generalized low- density (Tanner) codes[C] ,// Proceeding IEEE ICC. Vancouver: Curran Associates Inc., 1999: 441-445. 被引量:1
  • 4Chilappagari S K, Nguyen D V, Vasic B, et al. On trapping sets and guaranteed error correction capabili- ty o[ LDPC codes and GLDPC codes [J]. IEEE Transactions on Information Theory, 2010, 56 (4) .. 1600-1611. 被引量:1
  • 5Bocharova I E, Hug F, Johannesson R, et al. Doub- le-Hamming based QC LDPC codes with large mini- mum distance[C] // 2011 IEEE International Sympo- sium on Information Theory Proceedings. Saint-Pe- tersburg IEEE Express Conference Publishing, 2011: 923-927. 被引量:1
  • 6Yue Guosen, Ping Li, Wang Xiaodong. Generalized low-density parity-check codes based on Hadamard constraints[J]. IEEE Transactions on Information Theory, 2007, 53(3).. 1058-1079. 被引量:1
  • 7Abu-Surra S, Divsalar D, Ryan W E. On the typical minimum distance of generalized LDPC convolutional codes based on protographs[C]//ISIT 2010. Texas.. IEEE Express Conference Publishing, 2010: 709- 713. 被引量:1
  • 8Hu Xiaoy, Eleftheriou E, Arnold D M. Regular and irregular progressive edge-growth Tanner graphs[J]. IEEE Transactions on Information Theory, 2005, 51 (1) : 386-398. 被引量:1
  • 9郑贺,陆佩忠,胡捍英.基于二分图的乘积码迭代译码算法[J].电子与信息学报,2006,28(1):86-91. 被引量:2
  • 10Lin S, Costello D J. Error control coding[M]. Lan- don.. Prentice Hall, 2007: 711-715. 被引量:1

二级参考文献22

  • 1Elias P.Error-free coding,IRE Trans.on Info.Theory,1954,IT-4 (4):29-37. 被引量:1
  • 2Meron P.Next generation SDTV &HDTV distribution system.Available from http://www,broadcastpapers.com/tvtran/BCA03scopusNextGenSDTV&HDTV-print.htm. 被引量:1
  • 3Macwilliams F J,Sloane N J A.The Theory of Error-Correcting Codes,Amsterdam.North-Holland,1977:567-580. 被引量:1
  • 4Berror C,Glavieux A,Thitimajshima P.Near Shannon limit error-correcting coding and decoding:turbo codes.In Proc.,IEEE Int.Conf.on Commun.,Geneva,Seitzerland,May.1993:1064-1070. 被引量:1
  • 5Hagenauer J,Offer E,Papke L.Iterative decoding of binary block and convolutional codes.IEEE Trans.on Info.Theory,1996,42 (2):429-445. 被引量:1
  • 6Hirst S A,Honary B,Markarian G.Fast Chase algorithm with an application in Turbo decoding.IEEE Trans.on Commun.,2001,49 (10):1693-1699. 被引量:1
  • 7Pyndiah R M.Near-optimum decoding of product codes:block turbo codes.IEEE Trans.on Commun.,1998,46(8):1003-1010. 被引量:1
  • 8Chase D.A class of algorithms for decoding block codes with channel measurement information.IEEE Trans.on Info.Theory,1972,IT-18 (1):170-182. 被引量:1
  • 9Tanner R M.A recursive approach to low complexity codes.IEEE Trans.on Info.Theory,1981,IT-27 (5):533-547. 被引量:1
  • 10Kschischang F R,Frey B J,Loeliger H A.Factor graph and the sum-product algorithm.IEEE Trans.on Info.Theory,2001,47 (2):498-519. 被引量:1

共引文献5

同被引文献23

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部