期刊文献+

关于计算矩阵α-β广义逆的迭代法 被引量:2

THE ITERATIVE METHODS FOR COMPUTING THE α-β GENERALIZED INVERSE OF MATRICES
下载PDF
导出
摘要 给出了求矩阵α β广义逆的迭代公式 ,研究了迭代公式收敛的充分必要条件 ,所得到的迭代法可看作是计算矩阵Moore Penrose逆和加权Moore Penrose逆的迭代法的推广 . This paper gives the iterative formulas for computing the α β generalized inverse of arbitrary matrix and studies sufficient and necessary conditions of the convergence of the iterative methods for computing the α β generalized inverse.The iterative methods obtained in this paper can be seen as the extension of the iterative methods for computing Moore Penrose inveres and weighted Moore Penrose inverse of arbitrary matrix.
作者 刘国明
出处 《山东师范大学学报(自然科学版)》 CAS 2000年第1期16-18,共3页 Journal of Shandong Normal University(Natural Science)
关键词 矩阵 广义逆 迭代法 the α β generalized inverse iterative methods matrix
  • 相关文献

参考文献1

  • 1陈永林.加权投影算子与加权广义逆矩阵[J].应用数学学报,1983,6(3):282-291. 被引量:4

共引文献3

同被引文献10

  • 1骈俊生,朱超.Bott-Duffin逆和广义Bott-Duffin逆的代数扰动理论[J].中国科学技术大学学报,2005,35(3):334-338. 被引量:5
  • 2邓斌,陈果良.α-β广义逆矩阵的一个表征及其反序性[J].华东师范大学学报(自然科学版),2006(1):45-51. 被引量:2
  • 3Wei Z X, Chen G L. The definition and computing methods of weighted a-~ gengeralized inverse[J]. Journal of East China Normal University, 2001, 106(4): 1-9. 被引量:1
  • 4Wang G R, Wei Y M, Qia~ S Z. Generalized Inverses: Theory and Computations, Graduate Series in Mathematics[M]. Beijing: Science Press, 2004. 被引量:1
  • 5Ben I A, Greville T N E. Generalized Inverse: Theory and Applications (2nd Edition)[M]. New York: Springer-Verlag, 2003. 被引量:1
  • 6Wei Y M. A characterization and representation of the generalized inverse A2 and its applications[J]. T,S Linear Algebra and its Applications, 1998, 280(2-3): 87-96. 被引量:1
  • 7Wei Y M, Wu H B. The representation and approximation for the weighted moore-penrose inverse[J]. Applied Mathematics and Computation, 2001, 121(1): 17-28. 被引量:1
  • 8Djordjevi6 D S. Iterative methods for computing generalized inverses[J]. Applied Mathematics and Com- putation, 2007, 189(1): 101-104. 被引量:1
  • 9Saad Y. Iterative Methods for Sparse Linear Systems (2nd Edition)[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2003. 被引量:1
  • 10蔡静,朱超,陈果良.α-β广义逆的扰动理论及其应用[J].华东师范大学学报(自然科学版),2001(4):22-27. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部