期刊文献+

基于球谐函数参数化描述的形状扩散光学层析成像方法 被引量:1

Pilot Investigation into Shape-Based Diffuse Optical Tomography Methodology with Spherical Harmonics Parameterization
原文传递
导出
摘要 基于球谐函数参数化描述方法和组织器官光学特性分区均匀性假设,提出了一种稳态测量模式下形状扩散光学层析(DOT)成像方法,它能同时重建组织器官的形状及其内部光学参数。该方法中,正向模型采用扩散方程的边界元数值解法,图像反演则采用Levenberg-Marquardt优化算法。用不同噪声水平下的模拟数据和简化的仿体模型分别进行了模拟和实验验证。重建结果表明,所提出的算法具有较快的收敛速度和较好的全局收敛性,并能有效地恢复目标区域的形状参数和光学参数。 A shape-based approach of image reconstruction under continues-wave mode is developed for diffuse optical tomography (DOT), which aims to simultaneously recover the smooth region boundaries and optical parameters of the biological tissue. The method is based on the spherical harmonics parameterization methodology and an assumption that different anatomical regions have their respective sets of the homogeneous optical parameter distributions. The boundary element method (BEM) is used for forward modeling, and a Levenberg-Marquardt optimization method is implemented for the inverse problem. The proposed scheme is validated using a domain with two heterogeneous inclusions, the shape parameters and the optical coefficients of the domains can be simultaneously reconstructing at different noise levels. And physical experiment on a phantom is also conducted to evaluate the performance of our method. The reconstructed results show that the methodology is very promising and of good convergence. The homogeneous optical parameters and shape parameters of each region can be reconstructed with good accuracy.
出处 《光学学报》 EI CAS CSCD 北大核心 2013年第6期231-238,共8页 Acta Optica Sinica
基金 国家863计划(2009AA02Z413) 国家自然科学基金(30970775 81271618 61108081) 高等学校博士点学科专项科研基金(20120032110056) 天津市自然科学基金(10JCZDJC7300)资助课题
关键词 医用光学 形状扩散光学层析成像 边界元法 球谐函数参数化 逆问题 medical optics shape-based diffuse optical tomography boundary element method spherical harmonicsparameterization inverse problem
  • 相关文献

参考文献14

二级参考文献43

  • 1孟静,黄贤武,王加俊.一种基于模型的光学层析图像重建方法[J].光电工程,2007,34(3):109-113. 被引量:1
  • 2高峰,薛媛,赵会娟,Takashi Kusaka,Masanori Ueno,Yukio Yamada.Two-dimensional optical tomography of hemodynamic changes in a preterm infant brain[J].Chinese Optics Letters,2007,5(8):472-474. 被引量:3
  • 3V. Ntziachristos, C. H. Tung, C. Bremer et al,. Fluorescence molecular tomography resolves activity in vivo [J].Nature Medicine, 2002, 8(7) : 757-760. 被引量:1
  • 4V. Ntziachristos, C. Brener, E. E. Graves et al,. In vivo tomographic imaging of near-infrared fluorescent porbes [J]. Molecular Imaging, 2002, 1(2) : 82-88. 被引量:1
  • 5S. Lam, F. Lesage, X. lntes. Time domain fluorescent diffuse optical tomography: analytical expressions[J].Opt. Express, 2005, 13(7): 2263-2275. 被引量:1
  • 6S. R. Arridge. Optical tomography in medical imaging [J]. Inverse Problems, 1999, 15(2): 41-93. 被引量:1
  • 7J. K. Fletch. The solution ot muhigroup neutron transport equation using spherical harmonics [J].Nuclear Science and Engineering, 1983, 84:33-46. 被引量:1
  • 8Keith D., Paulsen, Huabei Jiang. Spatially varying optical property reconstruction using a finite element diffusion equation approximation[J]. Medical Physics, 1995, 22(6) : 691-700. 被引量:1
  • 9Huabei Jiang, Keith D., Paulsen et al.. Optical image reconstruction using frequency-domain data simulation and experiments[J]. Medical Physics, 1995, 22(6) :253-266. 被引量:1
  • 10Alexander D. Klose, Edward W. Larsen. Light transport in biological tissue based on the simplified spherical harmonics equations[J]. Journal o J Computation Physics, 2006, 220(1 ) : 441-470. 被引量:1

共引文献17

同被引文献19

  • 1WCong, G Wang, D Kumar, et al.. Practical reconstruction method for bioluminescence tomography [J]. Opt Express, 2005, 13(18): 6756-6771. 被引量:1
  • 2Margallo-Balbas, P J French. Shape based Monte Carlo code for light transport in complex heterogeneous tissues Express, 2007, 15(21): 14086-14098. 被引量:1
  • 3G Wang, Y Li, M Jiang. Uniqueness theorems in bioluminescence tomography [J]. Medical Physics, 2004, 31(8) 2289-2299. 被引量:1
  • 4X Gu, Q Zhang, L Larcom, et al.. Three-dimensional bioluminescence tomography with model-based reconstruction [J]. OptiExpress, 2004, 12(17): 3996-4000. 被引量:1
  • 5A D Klose, E W Larsen. Light transport in biological tissue based on the simplified spherical harmonics equations [J]. Comput Phys, 2006, 220(1): 441-470. 被引量:1
  • 6J Tian, K Liu, Y Lu, et al.. Evaluation of the simplified spherical harmonics approximation in bioluminescence tomography through heterogeneous mouse models [J]. Opt Express, 2010, 18(20): 20988-21002. 被引量:1
  • 7Y Lu, H B Machado, Q Bao, et al.. In vivo mouse bioluminescence tomography with radionuclide based imaging validation [J]. Mol Imag Biol, 2010, 13(1): 53-58. 被引量:1
  • 8D Marco. Multigrid for image deblurring with Tikhonov regularization [J].Numer Linear Algebra Appl, 2005, 12 (8): 715-729. 被引量:1
  • 9X He, G Geng, Z Zhang, et al.. Bioluminescence tomography with structural and sparse a priori information [C]. IEEE, 2011, 1: 170-174. 被引量:1
  • 10Stephen J Wright, Robert D Nowak. Sparse reconstruction by separable approximation [J]. IEEE Transactions on Signal Prosessing, 2009, 57(7): 2479-2491. 被引量:1

引证文献1

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部