期刊文献+

面向维吾尔语电话交谈式语音识别的词典设计方法研究 被引量:1

Lexicon design for Uyghur conversational telephone speech recognition
原文传递
导出
摘要 为了解决基于词语的维吾尔语语音识别系统集外词过多的问题,采用形态分析生成的语素或数据驱动切分生成的统计子词代替词语作为识别系统的词典单元。在此基础上,提出一种根据语素识别系统和统计子词识别系统在声学模型训练数据上的音素错误率差别选择词语最佳分解结果,从而构建语素-统计子词联合词典的方法。在维吾尔语电话交谈式语音识别任务上比较各个系统的性能。实验结果表明,语素或统计子词的运用能有效缓解词语系统集外词过多的问题。与词典大小为200K的词语系统相比,55K的语素-统计子词联合系统使测试集上的音素错误率从45.4%下降到43.8%。 To handle the high out-of-vocabulary (OOV) rate problem of the word-based Uyghur speech recognition system, morphemes, which are obtained from morphological parsing, or statistical sub-words, which are leaned through data-driven splitting, are selected as the lexicon units. Then, according to the phoneme error rates (PERs) difference on the acoustic training data, we build a hybrid vocabulary with morphemes and statistical sub-words by selecting the optimal splitting re- sult for each word. Performances of these systems are compared in the conversational telephone speech transcription task. Experiment results suggest the use of morphemes or statistical sub-words can alleviate the OOV problem effectively. Com- pared to a 200K word-based system, a 55K hybrid system reduces the PERs from 45.4% to 43.8% on the test set.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2013年第3期391-396,共6页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(10925419 90920302 61072124 11074275 11161140319 91120001 61271426) 中国科学院战略性先导科技专项(XDA06030100 XDA06030500) 国家863计划(2012AA012503) 中科院重点部署项目(KGZD-EW-103-2)~~
关键词 黏着语 语音识别 集外词 词语分解 分解方法联合 agglutinative language speech recognition out-of-vocabulary word decomposition hybrid decomposition
  • 相关文献

参考文献14

  • 1SZARVAS M,FURUI S.Finite State Transducer basedModeling of Morphosyntax with Application to HungarianLVCSR [C] // ICASSP 2003.[ s.l.]:ConferencePublications,2003:368-371. 被引量:1
  • 2HIRSIMAKI T,CREUTZ M,SIIYOLA V,et al.Unlim-ited Vocabulary Speech Recognition with Morph LanguageModels Applied to Finnish [ J].Computer Speech andLanguage,2006,20(4):515-541. 被引量:1
  • 3KWON O,PARK J.Korean Large Vocabulary Continu-ous Speech Recognition with Morpheme-based Recogni-tion Units [ J].Speech Communication,2003,39(3-4):287-300. 被引量:1
  • 4HACIOGLU K,PELLOM B.On Lexicon Creation forTurkish LVCSR [ C] // Eurospeech 2003.[s.l.]:Conference Publications,2003:1165-1168. 被引量:1
  • 5ARISOY E,DUTAGACI H,ARSLAN L M.A UnifiedLanguage Model for Large Vocabulary Continuous SpeechKecognition of Turkish [J].Signal Process,2006,86(10):2844-2862. 被引量:1
  • 6SAK H,SARAgLAR M,GUNGOR T. Morphology-basedand Suh-wonl Language Modeling for Turkish SpeechRecognition [ C].// ICASSP 2010.[ s.l.]:Confer-ence Publications,2010:5402-5405. 被引量:1
  • 7早克热.卡德尔,艾山.吾买尔,吐尔根.依布拉音,艾斯卡尔.艾木都拉.维吾尔语名词构形词缀有限状态自动机的构造[J].中文信息学报,2009,23(6):116-121. 被引量:19
  • 8阿孜古丽.夏力甫,早克热.卡德尔,吐尔根.依布拉音.维吾尔语动词体范畴的有限状态自动机的构建[J].中文信息学报,2012,26(4):61-65. 被引量:4
  • 9TUHSUN N,SII-AMU W.Large Vocahulaiy Continuous Speech Recognition in Uyghur:Data Preparation and Ex-perimental Results [ C] // ISCSLP 2008.[s.l.]:Con-ftrenfe Publications,2008:1-4. 被引量:1
  • 10BEESLEY K H,KAKTFUNEN L.Finite State Morpholo-gy [M].Stanford,CA,USA:CSLI Publications,2003. 被引量:1

二级参考文献29

  • 1木哈白提·哈斯木,哈力克·尼亚孜.现代维吾尔语动词体语缀的重叠与分布[J].民族语文,1996(1):57-60. 被引量:3
  • 2古丽拉.阿东别克,米吉提.阿布力米提.维吾尔语词切分方法初探[J].中文信息学报,2004,18(6):61-65. 被引量:39
  • 3力提甫.托乎提.电脑处理维吾尔语语音和谐律的可能性[J].中央民族大学学报(哲学社会科学版),2004,31(5):108-113. 被引量:14
  • 4阿依克孜.卡德尔,开沙尔.卡德尔,吐尔根.依布拉音.面向自然语言信息处理的维吾尔语名词形态分析研究[J].中文信息学报,2006,20(3):43-48. 被引量:22
  • 5L. S. Larkey, L. Ballesteros and M. E. Connell. Improving Stemming for Arabic Information Retrieval: Light Stemming and Co-occurrence Analysis[C]//Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, Tampere, Finland,2002, 275-282. 被引量:1
  • 6Tai, S. Y., Ong, C. S., and Abdullah, N. A. On designing an automated Malaysian stemmer for the Malay language(poster) [C]//Proeeedings of the fifth international workshop on information retrieval with Asian languages, Hong Kong, 2000: 207-208. 被引量:1
  • 7Greengrass, M., Robertson, A. M., Robyn, S., and Willett, P. Processing morphological variants in searches of Latin text [J]. Information research news, 1996, 6(4): 2-5. 被引量:1
  • 8Berlian, V., Vega, S. N., and Bressan, S. Indexing the Indonesian web: Language identification and miscellaneous issues[C]//Presented at Tenth International World Wide Web Conference, Hong Kong, 2001. 被引量:1
  • 9Carlberger, J., Dalianis, H., Hassel, M., and Knutsson, O. Improving precision in information retrieval for Swedish using stemming[C]//Proceedings of NO- DALIDA'01-13th Nordic conference on computational linguistics, Uppsala,Sweden, 2001. 被引量:1
  • 10Monz, C. and de Rijke, M. Shallow morphological analysis in rnonolingual information retrieval for German and Italian[C]//Cross-qanguage information retrieval and evaluation: Proceedings of the CLEF 2001 workshoo, C. Peters, Ed.: Soringer Verlag. 2001. 被引量:1

共引文献20

同被引文献14

  • 1Kim Y, Franco H, Neumeyer L. Automatic pronunciation scoring of specific phone segments for language instruction. In: Proceedings of Eurospeech'97, Rhodes, 1997. 649- 652. 被引量:1
  • 2Witt S M. Use of speech recognition in computer-assisted language learning. Dissertation for Ph.D. Degree. Cambridge: The University of Cambridge, 1999. 被引量:1
  • 3徐明星,宋战江,郑方,等.汉语语音水平评价方法的研究.第五届全国人机语音通信学术会议,哈尔滨,1998.174-177. 被引量:1
  • 4潘复平.计算机辅助汉语普通话发音质量评估算法研究.博士学位论文.北京:中国科学院声学研究所,2007. 被引量:1
  • 5Carkin K, Geutner P, Schultz T. Turkish LVCSR: towards better speech recognition for agglutinative languages. In: Proceedings of ICASSP, Istanbul, 2000. 3688-3691. 被引量:1
  • 6Creutz M, Lagus K. Unsupervised Morpheme Segmentation and Morphology Induction From Text Corpora Using Morfessor 1.0. Technical Report AS1. 2005. 被引量:1
  • 7Hacioglu K, Pellom B, Ciloglu T, et al. Onlexicon creation for Turkish LVCSR. In: Proceedings of Eurospeech'03, Geneva, 2003. 1165-1168. 被引量:1
  • 8Arisoy E, Dutagaci H, Arslan L M. A unified language model for large vocabulary continuous speech recognition of Turkish. Signal Process, 2006, 86:2844- 2862. 被引量:1
  • 9Hirsimaki T, PylkkSnen J, Kurimo M. Importance of high-ordern-gram models in morph-based speech recognition. IEEE Trans Audio Speech Lang Process, 2009, 17:724- 732. 被引量:1
  • 10Ablimit M, Neubig G, Mimura M, et aI. Uyghur morpheme based language models and ASR. In: Proceedings of IEEE-ICSP, Beijing, 2010. 581-584. 被引量:1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部