期刊文献+

基于决策级融合的RX高光谱影像异常检测算法 被引量:4

A RX Anomaly Detection Algorithm for Hyperspectral Image Based on Decision-level Fusion Method
下载PDF
导出
摘要 对高光谱影像的RX异常检测算法进行了研究。针对RX算法中对高维数据局部背景协方差矩阵估计存在较大误差的局限性,提出一种基于决策级融合的RX算子高光谱影像异常目标检测算法。首先,对同一场景下的可见近红外数据和短波红外数据分别运用经典的RX算子进行异常检测,得到初步异常检测的目标判决。在此基础上,利用传感器获取信息的冗余性和互补性特性,结合基于规则的决策级融合方法,得到最终的RX异常检测判决结果。在实测高光谱数据上进行了实验仿真,验证了本算法的有效性。 In this paper, an anomaly detection method based on RX algorithm for hyperspectral image is studied. Aiming at the error of estimating the local background covariance matrix for the RX algorithm, an anomaly detection algorithm based on decision-level fusion is proposed for hyperspectral RX detectors. Firstly, we apply the RX algorithm to calculate the preliminary result of anomaly detection for hyperspectral image on visible/near-infrared bands and short-wave infrared bands respectively. On this basis, considering the information redundancy and complementary characteristics of different sensors, we construct a decision-level fusion method to refine the result of the previous RX anomaly detection. The experimental results based on a real data set show that the proposed method achieves satisfactory improvement.
出处 《红外技术》 CSCD 北大核心 2013年第6期339-344,共6页 Infrared Technology
基金 国防基础科研计划 教育部留学回国人员启动基金
关键词 高光谱影像 异常检测 RX算法 决策级融合 hyperspectral image anomaly detection RX detector decision-level fusion
  • 相关文献

参考文献14

  • 1宗靖国,张建奇,秦翰林,刘德连.基于非子采样金字塔变换的高光谱图像异常检测[J].红外技术,2011,33(1):56-60. 被引量:3
  • 2Fowler J E, Du Q. Hyperspectral image compression using JPEG2000 and principal component analysis[J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2007, 2(4): 201-205. 被引量:1
  • 3Matteoli S, Diani M, Corsini G A tutorial overview of anomaly detection in hyperspectral images[J]. 1EEE Transactions on Aerospace and Electronic Systems Magazine, 2010, 25(7): 5-28. 被引量:1
  • 4Tillo T, Penna B, Magli E, et al. Hyperspectral image compression employing a model of anomalous pixels [J]. IEEE Transactions on Geoscience and Remote Sensing Letters, 2007, 4(4): 664-668. 被引量:1
  • 5Eches O, Dobigeon N, Tourneret J. Y. Enhancing hyperspectral image unmixing with spatial correlations[J]. IEEE Transactions on Geoseience and Remote Sensing, 2011,49(11 ): 4239-4247. 被引量:1
  • 6Stein D W J, Beaven S G, Hoff L E, et al. Anomaly detection from hyperspectral imagery[J]. IEEE Transactions on Signal Processing Magazine, 2002, 19: 58-69. 被引量:1
  • 7Kwon H, Der S Z, Nasrabadi N M. Adaptive anomaly detection using subspace separation for hyperspectral imagery[J]. Optical Engineering, 2003, 42(11): 3342-3351. 被引量:1
  • 8Ma L, Crawford M M, Tian J. Anomaly detection for hyperspectral images based on robust locally linear embedding[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2010, 31(6): 753 -762. 被引量:1
  • 9Molero J M, Paz A, Plaza A. et al. Fast anomaly detection in hyperspectral images with RX method on heterogeneous clusters[J]. The Journal of Supercomputing, 2011, 58(3): 411-419. 被引量:1
  • 10Reed I. S, Yu X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38(10): 1760-1770. 被引量:1

二级参考文献18

  • 1尹超,向健勇,韩建栋.一种基于区域背景预测的红外弱小目标检测方法[J].红外技术,2004,26(6):62-65. 被引量:22
  • 2贺霖,潘泉,赵永强,郑纪伟,魏坤.基于波段子集特征融合的高光谱图像异常检测[J].光子学报,2005,34(11):1752-1755. 被引量:19
  • 3I. S. Reed, X. Yu. Adaptive MultipleBand CFAR Detection of an Optical Pattern with Unknown Spectral Distribution[J]. IEEE Trans. Acoustics, Speech, Signal Processing, 1990, 38(10): 1760-1770. 被引量:1
  • 4C. I. Chang, S. S. Chiang. Anomaly Detection and Classification for Hyperspectral Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(6): 1314-1325. 被引量:1
  • 5C. I. Chang, S. S. Chiang, Irving W. Ginsbcrg. Anomaly Detection in Hyperspectral Imagery[C]llSPlE Proceedings of Geo-Spatial Image and Data Exploitation II, 2001, 43(3): 43-50. 被引量:1
  • 6X. Yu, I. S. Reed. Comparative Performance Analysis of Adaptive Multispectral Detectors[J]. IEEE Trans. Acoustics, Speech, Signal Processing, 1993, 41(8): 2639-2655. 被引量:1
  • 7D. Manolakis, D. Marden, G. A. Shaw. Hypcrspectral Image Processing for Automatic Target Detection Applications[J]. Lincoln Laboratory Journal, 2003, 14(1): 79-116. 被引量:1
  • 8D. Manolakis, G. Shaw. Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Process. Mag., 2002,19(1): 29-43. 被引量:1
  • 9R. W. Basedow, D. C. Canner, M. E. Anderson. HYDICE system:implementation and performance[C]jmaging Spectrometry, Proceedings of the SPIE, 1995, 2480: 258-26. 被引量:1
  • 10Chein-I Chang, Shao-Shah Chiang Irving W. Ginsberg. Anomaly Detection in Hyperspectal Imagery[C]aUroceeding of SPIE, 2001, 4383: 43-50. 被引量:1

共引文献7

同被引文献36

  • 1张立燕,谌德荣,陶鹏.基于顶点成分分析的高光谱图像低概率异常检测方法研究[J].宇航学报,2007,28(5):1262-1265. 被引量:10
  • 2谷延锋,刘颖,贾友华,张晔.基于光谱解译的高光谱图像奇异检测算法[J].红外与毫米波学报,2006,25(6):473-477. 被引量:17
  • 3寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报,2007,27(7):1178-1182. 被引量:27
  • 4Irving S. Reed, XiaoLi Yu. Adaptive Multiple-band CFAR Detection of an Optimal Pattern with Unknown Spectral Distribution[ J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1990, 38 (10) :1760- 1770. 被引量:1
  • 5Heesung Kwon, Nasrabadi, N. M. Kernel RX-algorithm:a nonlinear Anomaly Detector for Hyperspectral Imagery[ J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(2) :388 -397. 被引量:1
  • 6Amit Banerjee, Philippe Burlina, Chris Diehl. A Support Vector Method for Anomaty Detection in Hyperspectral Imagery [ J ]. IEEE Transactions on Geoscienee and Remote Sensing, 2006, 44 (8) :2282 -2291. 被引量:1
  • 7Joseph C. Harsanyi, Chein-1 Chang. Hyperspectral image classification and dimensionality redaction: An Orthogonal Subspace Projection Approach[ J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(4) :779 -785. 被引量:1
  • 8Manolakis, D. , Shaw G. Detection Algorithms for Hyperspectral Imaging Applications[ J ]. Signal Processing Magazine, IEEE, 2002, 19(1) :29 -43. 被引量:1
  • 9Hazel GG. Multivariate Gaussian MRF for Muhispectral Scene Segmentation and Anomaly Detection [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38 ( 3 ) : 1199 - 1211. 被引量:1
  • 10Edisanter Lo, Variable factorization model based on numerical optimizationfor hyperspectral anomaly detection [ J ]. Springer, Pattern Anal Application, 2012. 被引量:1

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部