期刊文献+

系统规模对群体行为的效果 被引量:2

Effects of system size on population behavior
原文传递
导出
摘要 影响细胞群体行为的因素是多种多样的,除了以前研究的细胞通讯方式和环境因素外,还与现有文献没有或很少研究的细胞数目(即系统规模)有关.本文研究了系统规模对一类合成多细胞通讯系统的聚类行为的影响.在该系统中,单个系统是由压制振动子和基于延迟的松弛振子整合而成的振子,而振子之间通过群体感应机制相互耦合.通过分岔分析和数值模拟发现:细胞数目的增加不仅可以改变平衡态聚类稳定性区间的大小并诱导新的聚类行为,而且有利于扩大平衡态聚类的吸引域,表明细胞分化可能与系统规模有密切关系;细胞数目的增加还可以极大地丰富平衡态聚类和振动聚类的表现形式和共存方式,为生物体对环境的适应性提供了良好的基础.我们的结果不仅扩充了耦合系统的动力学行为,也为理解多细胞现象奠定了基础. There are many factors to influence the population behavior of cells. Except for the ways of cellular communication and the cellular environment, Which have been considered in the previous studies, the number of cells (or system size) that has been little considered before is also an important factor. This article investigates effects of system size on clustering behavior in a synthetic multicellular system, where individual oscillators are an integration of repressilator and hysteresis-based oscillators and are coupled through a quorum-sensing mechanism. By bifurcation analysis and numerical simulation, we find that increasing the cell number not only can change the size of the stability interval of steady state clusters and induce new clustering behaviors, but also benefits the enlargement of the attraction basin of steady state clusters, implying that cell differentiation may be closely related to the system size. In addition, such an increase can greatly extend the kinds and coexisting modes of steady state and oscillatory clusters, which would provide a good basis for the adaptability of organisms to the environment. Our results have extended the connotation of dynamics of coupled systems and also may be the foundation for understanding multicellular phenomena.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第11期534-543,共10页 Acta Physica Sinica
基金 国家自然科学基金(批准号:91230204,30973980) 中山大学广东省计算科学重点实验室开放基金(批准号:20120611) 江西省教育厅科学技术研究项目(批准号:GJJ13218) 江西师范大学科研计划(批准号:3092) 江西师范大学博士启动基金(批准号:4166)资助的课题~~
关键词 系统规模 群体感应 群体行为 耦合振子 system size, quorum sensing, population behavior, coupled oscillators
  • 相关文献

参考文献39

  • 1Nakajima A, Kaneko K 2008 J. Theor. Biol. 253 779. 被引量:1
  • 2Kaneno K, Yomo T 1994 Physica D 75 89. 被引量:1
  • 3Kaneko K, Yomo T 1997 B. Math. Biol. 59 139. 被引量:1
  • 4Wang J W, Chen A M, Zhang J J, Yuan Z J, Zhou T S 2009 Chin. Phys. B 18 1294. 被引量:1
  • 5Wang B H, Lu Q S, Lv S J, Lang X F 2009 Chin. Phys. B 18 872. 被引量:1
  • 6Greenwald I, Rubin G M 1992 Cell 68 271. 被引量:1
  • 7Armour C, Garson K, McBurney M W 1999 Exp. Cell Res. 251 79. 被引量:1
  • 8Garcia-Ojalvo J, Elowitz M B, Strogatz S H 2004 Proc. Natl. Acad. Sci. U.S.A. 101 10955. 被引量:1
  • 9Blair S S 2007 Annu. Rev. Cell Dev. Biol. 23 293. 被引量:1
  • 10Fields R D, Burnstock G 2006 Nat. Rev. Neurosci. 7 423. 被引量:1

同被引文献12

  • 1J.J.Tyson and H.G.Othmer, The dynamics of feedback control circuits in biochemical pathways,Progr.Theor. Biol. 1976,5:1-62. 被引量:1
  • 2A.D.Keller,Model genetic circuits encoding autoregulatory transcription factors, J.Theor. Biol. 1995,172:169-185. 被引量:1
  • 3R. Thomas,D.Thieffry and M. Kaufman, Dynamical behaviour of biological regulatory networks,Bull. Math.Biol,1995, 57:247-276. 被引量:1
  • 4K.Pye and B. Chance, Sustained sinusoidal oscillations of reduced pyridine nucleotide in a cell- free extract of Saccharomyces carlsbergensis, Proc.Natl.Acad. Sci.USA, 1996,55: 888894. 被引量:1
  • 5B.Hess and A.Boiteux, Oscillatory phenomena in biochemistry. Annu. Rev. Biochem, 1971,40:237-258. 被引量:1
  • 6C HEN Aimin ,WANG Xingwang,LIU Caixia,WANG Junwei,Coupled Feedback Loops Form Birhythmicity and Inhomogeneous Limit Cycles of Synthetic Regulatory Networks, proceeding of the 32rid Chinese control confeience, 2013. 被引量:1
  • 7I. Potapov,E. Volkov, Dynamics of coupled repressilatorsz The role of mRNA kinetics and Lranseription cooperativity[J].PRE ,2011,83:031901. 被引量:1
  • 8Qizhi Yi, Tianshou Zhou. Communication- induced multistability and multirhythmicity in a synthetic multicelouoar system[J].PRE, 2011, 83:051907. 被引量:1
  • 9Q.Z.Yi,l.l. Zhang,Z.I.Yuan,etal Collective dynamics of genetic oscillators with cell-to-cell communication:a study case of signal integration[J]. Eur.Phys. 1. B, 2010,75(3): 355-372. 被引量:1
  • 10D.Yang,Y.Li,A. Kuznetsov. Characterization and merger ol oscillatory mechanisms in an artificial genetic regulatory network[J]. CHAOS,2009,19(3):033115. 被引量:1

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部