期刊文献+

ZnO薄膜/金刚石在不同激励条件下声表面波特性的计算与分析 被引量:5

Calculation and analysis of surface acoustic wave properties of ZnO film on diamond under different excitation conditions
原文传递
导出
摘要 本文首先以刚度矩阵法为基础,给出了ZnO薄膜/金刚石在四种不同激励条件下的有效介电常数计算公式.然后以此为工具,分别计算了多晶ZnO(002)薄膜/多晶金刚石和单晶ZnO(002)薄膜/多晶金刚石的声表面波特性,并根据计算结果及设计制作声表面波器件的要求,对ZnO膜厚的选择进行了详细地分析.最后讨论了ZnO/金刚石/Si复合晶片可以忽略Si衬底对声表面特性影响时对金刚石膜厚的要求. In the last twenty years, the ZnO/diamond layered structure for surface acoustic wave (SAW) devices have been widely studied and have attracted great attention, due to its advantages of high acoustic velocity, high electromechanical coupling coefficient and high power durability. Distinguished from the conventional single-crystal substrate (such as quartz, lithium niobate), ZnO/diamond layered structure shows dispersive SAW properties, which can be excited by four ways: interdigital transducer (IDT)/ZnO/diamond, IDT/ZnO/shorting metal/diamond, ZnO/IDT/diamond, and shorting metal/ZnO/IDT/diamond. In this paper, the formulation based on the stiffness matrix method for calculating the effective permittivity of ZnO/diamond layered structure under four excitation conditions is given first. Then, by using this formulation, the SAW properties of the monocrystalline ZnO (002) film on polycrystalline diamond and the polycrystalline ZnO (002) film on polycrystalline diamond are calculated respectively. Based on the results of calculation, the ZnO film thicknesses qualified to design and fabricate SAW device are analyzed in detail. Finally, we discuss the function of diamond film thickness of ZnO/diamond/Si layered structure so as to avoid the influence of the silicon substrate on the SAW properties.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2013年第11期468-479,共12页 Acta Physica Sinica
基金 国家高技术研究发展计划(批准号:2013AA030801) 国家自然科学基金(批准号:50972105) 天津市科技支撑计划重点项目(批准号:10ZCKFGX01200) 天津市科技计划重点项目(批准号:10SYSYJC27700)资助的课题~~
关键词 声表面波 压电多层结构 有效介电常数 刚度矩阵法 surface acoustic wave, piezoelectric multilayered structure, effective permittivity, stiffness matrixmethod
  • 相关文献

参考文献35

  • 1Nakahata H, Higaki K, Fujii S, Hachigo A, Kitabayashi H, Tanabe K, Seki Y, Shikata S 1995 P. 被引量:1
  • 2Higaki K, Nakahata H, Kitabayashi H, Fujii S, Tanabe K, Seki Y, Shikata S 1997 IEEE Trans. 被引量:1
  • 3Fujii S, Seki Y, Yoshida K, Nakahata H, Higaki K, Kitabayashi H, Shikata S 1997 Proc. IEEE. 被引量:1
  • 4Guang Y, Santos P V 2007 Acta Phys. Sin. 56 3515 (in Chinese). 被引量:1
  • 5Pedrós J, Garcia-Gancedo L, Ford C, Barnes C, Griffiths J, Jones G, Flewitt A 2011 J. Appl. 被引量:1
  • 6Fu Y, Garcia-Gancedo L, Pang H, Porro S, Gu Y, Luo J, Zu X, Placido F, Wilson J, Flewitt A. 被引量:1
  • 7Pan F, Luo J T, Yang Y C, Wang X B, Zeng F 2012 Sci. China Tech. Sci. 55 421. 被引量:1
  • 8Luo J, Zeng F, Pan F, Li H, Niu J, Jia R, Liu M 2010 Appl. Surf. Sci. 256 3081. 被引量:1
  • 9Luo J, Fan P, Pan F, Zeng F, Zhang D, Zheng Z, Liang G, Cai X 2012 Phys. Status Solidi RRL. 被引量:1
  • 10Luo J, Pan F, Fan P, Zeng F, Zhang D, Zheng Z, Liang G 2012 Appl. Phys. Lett. 101 172909. 被引量:1

同被引文献63

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部