期刊文献+

直线电梯单电磁导向装置悬浮气隙高度控制 被引量:4

Maglev air-gap altitude control of single electromagnetic guiding actuator for linear elevator
下载PDF
导出
摘要 针对单电磁导向系统参数变化及外部扰动对悬浮气隙高度产生的影响,提出了RBF神经网络自适应滑模控制方法.采用RBF神经网络并利用其学习功能,对直线电梯单电磁悬装置不确定参数进行自适应补偿,取代了常规滑模控制切换部分,并且消除了系统高频抖振现象.通过比例微分并行控制提高了RBF神经网络参数的收敛性,改善了局部极小现象的发生,增强了系统的鲁棒性,并采用Lyapunov稳定性理论证明了系统的稳定性.Matlab仿真显示该方法具有良好的跟踪性和鲁棒性. For the influence of parameter variation and extra disturbance of single electromagnetic guiding system on the maglev air-gap altitude, a RBF neural network method based on adaptive sliding mode control was proposed. With the RBF neural network and its learning function, the adaptive compensation of uncertain parameters for the single electromagnetic maglev actuator of linear elevator was performed, which could replace the switching part of conventional sliding mode control and eliminate the high-frequency chattering phenomenon of the system. The convergence of parameters for the RBF neural network gets enhanced through the proportional and differential parallel control, the occurrence of local minimum phenomenon is minished, and the robustness of the system is improved. In addition, the stability of the system is proved with Lyapunov stability theory. The Matlab simulated results show that the proposed method exhibits good tracking performance and robustness.
出处 《沈阳工业大学学报》 EI CAS 北大核心 2013年第3期251-256,共6页 Journal of Shenyang University of Technology
基金 辽宁省教育厅科学技术研究资助项目(L2010404)
关键词 直线电梯 滑模控制 RBF神经网络 自适应 悬浮导向装置 PD并行控制 Lyapunov稳定性分析 鲁棒性 linear elevator sliding mode control RBF neural network adaption maglev guiding actuator parallel PD control Lyapunov stability analysis robustness
  • 相关文献

参考文献13

二级参考文献41

共引文献49

同被引文献31

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部