期刊文献+

基于随机游走的网络故障节点定位算法仿真 被引量:2

Random Walk Based Network Fault Node Localization Algorithm Simulation
下载PDF
导出
摘要 网络规模逐渐增大,路由节点呈现出了较大的随机性分布,节点的位置关联性被打破,很难建立准确的定位模型,造成传统的基于特征匹配的节点故障定位方法很难描述较大的随机性变化特性,造成故障定位的不准确。为了解决上述问题,提出一种随机游走的网络故障节点检测算法,通过把检测到的故障特征作为随机游走的初值种子点和节点故障配准的特征点,将故障特征配准和位置随机变化检测结合起来,提高了变化检测的效率。改进方法采用了一种最小化特征权值策略来提取故障特征的不透明度,能检测到大范围的节点异常变化,包括一些细微的变化。仿真结果表明,改进方法能够提高故障节点定位的准确性。 Research the accurate localization of network fault node. The paper put forward a random migration network fault node detection algorithm. Through the examination, the algorithm takes the failure characteristics as the initial seed point of random walk and the feature point of node fault registration, combines the failure characteristics registration and position random change detection. The algorithm adopts a minimize feature weights strategy to extract fault features opacity, thus can detect a wide range of node abnormal changes. The simulation results show that the algorithm can improve the accuracy of fault node localization.
作者 杜兴盛
出处 《计算机仿真》 CSCD 北大核心 2013年第6期271-274,共4页 Computer Simulation
关键词 网络 节点定位 随机游走 Network The node localization Random walk
  • 相关文献

参考文献10

  • 1H Chunlei, Z Zhixin, L Hanqing. Fast object- level change de- tection for VHR images[J]. IEEE Geoscience and Remote Sensing Letters, 2010,7( 1 ) :118 - 122. 被引量:1
  • 2F Pacifici, F De1 Frate. Automatic change detection in very high resolution images withpulse - coupled neural networks [ J ]. IEEE Geoscience and Remote Sensing Letters, 2010,7( 1 ) :58 -62. 被引量:1
  • 3T Celik. Change detection in satellite images using a genetic algo- rithm approach[J]. IEEE Geoscience and Remote Sensing Letters, 2010,7(2) :386-390. 被引量:1
  • 4T Celik. Unsupervised change detection in satellite image using principal component analysisand k - means clustering [ J ]. IEEE Geoscience and Remote Sensing Letters, 2009,6 (1) :33 -37. 被引量:1
  • 5D Rouhollah, K Shohreh. Change detection in optical remote sens- ing images using difference - based methods and spatial information [J]. IEEE Geoscience and Remote Sensing Letters, 2010,7( 1 ) : 215 -219. 被引量:1
  • 6G Lowe David. Distinctive Image Features from Scale - invariant Keypoints[ J]. International Journal of Computer Vision, 2004,60 (2) :91 - 110. 被引量:1
  • 7H Bay, A Ess, T Tuytelaars, L V Gool. SURF: Speeded Up Ro- bust Features [ J ]. Computer Vision and Image Understanding, 2008,110(3) :346 - 359. 被引量:1
  • 8C Benedek, T Sziranyi. Change detection in optical aerial images by a multilayer conditional mixed markov model[ J]. IEEE Trans- actions on Geoscience and Remote Sensing, 2009,47 ( 10 ) : 3416 - 3430. 被引量:1
  • 9L Grady. Random Walks for Image Segmentation[ J]. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 2006,28 (11) :1768 -1783. 被引量:1
  • 10L Bruzzone, D Prieto. Automatic analysis of the difference image for unsupervised change detection[ J]. IEEE Transactions on Ge- oscience and Remote Sensing, 2000,38 ( 3 ) : 1171 - 1182. 被引量:1

同被引文献22

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部