期刊文献+

非接触心电测量及滤波方法研究

Research on Non-Contacting ECG Measurement and Filtering Method
原文传递
导出
摘要 非接触测量是实现对人体心电(ECG)信号长时间监测的一种有效方法。由于测量电极与人体之间的相对位置不固定,导致采集的ECG信号不断的发生变化,在滤波时经常出现ECG信号被削弱而失真的情况。本文运用主成分分析(PCA)的基础理论,提出了一种快速自适应PCA去噪算法,该算法能够根据ECG信号的改变自动的调整参数。通过实验证明了PCA去噪算法几乎不受信号变化的影响,能够在保留ECG信号主要特征的前提下将干扰信号一次性去除,同时很好的解决了ECG信号在滤波时被削弱的问题。 Non-contact measurement is an effective method of long time measurement of human electrocardiograph (ECG) signal. Because the relative position between measuring electrode and human body is not fixed, this method could result in constant changes of ECG signal collection. It often appears ECG signal distorting and weakened in fil- tering. This paper, using the principal component analysis (PCA) basic theory, proposes a fast adaptive PCA de- noising algorithm which can automatically adjust the parameters according to the changes of ECG signal. The experi- ment proved that PCA denoising could be barely impacted by signal changes and can disposably remove interference signal on the premise of keeping the main features of ECG signal and can prevent ECG signal from being weakened in filtering at the same time.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2013年第3期499-502,共4页 Journal of Biomedical Engineering
关键词 耦合电容 主成分分析 动态嵌入 幅值特性 Coupling capacitance Principal component analysis (PCA) Dynamical embedding (DE) Amplitude characteristic
  • 相关文献

参考文献7

  • 1MARUYAMA T, SHIOZAWA N, MAKIKAWA M. Tpmo-graphical ECG Measurement using capacitance type multi elec-trodes [J]. IFMBE Procee,2007,14(1) :452-455. 被引量:1
  • 2JAMES C J , LOWE D. Extracting multi-source brain activityfrom a single electromagnetic channel [J]. Artif Intell Med,2003,28(1):89-104. 被引量:1
  • 3刘宝华,戴成武.EVD算法在踝臂指数测量中的应用[J].传感技术学报,2010,23(1):19-23. 被引量:3
  • 4THIREOU T, STRAUSS I G,DIMITRAKOPOULOU-STRAUSS A,et al. Performance evaluation of principal com-ponent analysis in dynamic FDG-PET studies of recurrent colo-rectal cancer [J]. Comput Med Imaging Graph, 2003*27(1):43-51. 被引量:1
  • 5RICHARDS J E. Recovering dipole sources from scalp-recordedevent-related-potentials using component analysis: principalcomponent analysis and independent component analysis [J].Int J Psychophysiol, 2004,54(3) :201-220. 被引量:1
  • 6LI J,AN X J,HE H G. Line segments detection with scale a-nalysis: a principal component analysis based approach[C]//IEEE International Conference on Intelligent Computing andIntelligent Systems, Shanghai: 2009 : 43-47. 被引量:1
  • 7HE F, LI M,YANG J H, et al. Research on nonlinear processmonitoring and fault diagnosis based on kernel principal componentanalysis [J]. Key Eng Mater,2009?413-414:583-590. 被引量:1

二级参考文献10

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部