期刊文献+

基于矩阵分解和混沌置乱的数字水印算法 被引量:5

Digital Watermarking Algorithm Based on Matrix Decomposition and Chaotic Scrambling
下载PDF
导出
摘要 为了提高运算效率,同时保证算法的不可见性和鲁棒性,提出了一种基于矩阵Schur分解的盲水印算法.首先利用混沌原理对水印信息置乱加密,然后将分块载体图像进行离散余弦变换(DCT),利用矩阵分解理论得到对称矩阵,将对称矩阵作Schur分解,通过量化调制完成水印的嵌入.结果表明,该算法运算量小,并且具有良好的不可见性和鲁棒性. In order to reduce computational complexity, and also to meet the demand of invisibility and robustness of the digital watermark, a novel blind watermarking algorithm based on Schur decomposition of matrices was proposed. Firstly, the chaotic sequence was used to scramble watermark, then the original image was subdivided block by block, and every block was manipulated by discrete cosine transform (DCT). After that, symmetric matrices were obtained by matrix splitting method, which were decomposed to get diagonal matrices by Schur decomposition. Finally, the watermark was embedded into diagonal matrices with quantization method. Results showed that the proposed new algorithm not only had less computational complexity, but also had good performance on invisibility and robustness.
出处 《郑州大学学报(理学版)》 CAS 北大核心 2013年第2期50-53,共4页 Journal of Zhengzhou University:Natural Science Edition
基金 数学天元基金资助项目 编号11226088 河南省教育厅自然科学基础研究计划项目 编号2011B510001 河南省基础与前沿技术研究计划项目 编号092300410145
关键词 数字水印 矩阵分解 对称矩阵 鲁棒性 digital watermarking matrix decomposition symmetric matrix robustness
  • 相关文献

参考文献7

  • 1马宁,于洪志.基于Arnold变换和DCT变换的图像水印算法[J].广西师范大学学报(自然科学版),2011,29(3):163-167. 被引量:8
  • 2Liu Ruizhen, Tan Tieniu. A SVD based watermarking scheme for protecting rightful ownership [ J ]. IEEE Transactions on Multi- media, 2002, 4(1) : 121 -128. 被引量:1
  • 3赖思渝,王娟,李明东.DWT和DCT相结合的水印算法[J].郑州大学学报(理学版),2012,44(1):66-70. 被引量:1
  • 4Wang Mingshi, Chen Weiche. A hybrid DWT-SVD copyright protection scheme based on k-means clustering and visual cryptog- raphy[J]. Computer Standards & Interfaces, 2009, 31(4): 757 -762. 被引量:1
  • 5李旭东,张振跃.利用矩阵范数实现的公开水印技术[J].计算机辅助设计与图形学学报,2005,17(8):1857-1861. 被引量:17
  • 6Nikolaidis A, Pitas I. Robust watermarking of facial images based on salient geometric pattern matching[ J ]. IEEE Transactions on Multimedia, 2000, 2(3): 172- 184. 被引量:1
  • 7Gregorio R, Oliveira P R. Proximal point algorithm with Schur decomposition on the cone of symmetric semidefinite positive ma- trices[ J ]. Journal of Mathematical Analysis and Applications, 2009, 355 (2) : 469 - 478. 被引量:1

二级参考文献23

共引文献23

同被引文献48

引证文献5

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部